Citation: Ming-Feng SHI, Jiang-Hong GU, Yi WAN, Zhong-Xuan XU. Three Zn(Ⅱ)-MOFs Based on Imidazole Derivatives and 2, 5-Dimethoxyterephthalic Acid: Syntheses, Crystal Structures, and Fluorescence Properties[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1180-1188. doi: 10.11862/CJIC.2022.121 shu

Three Zn(Ⅱ)-MOFs Based on Imidazole Derivatives and 2, 5-Dimethoxyterephthalic Acid: Syntheses, Crystal Structures, and Fluorescence Properties

  • Corresponding author: Zhong-Xuan XU, xuzhongxuan4201@163.com
  • Received Date: 19 December 2021
    Revised Date: 29 March 2022

Figures(6)

  • In the presence of 2, 5-dimethoxyterephthalic acid (H2DTA), three 3D metal-organic frameworks, namely {[Zn(DTA)(1, 2, 4, 5-TIB)0.5]·1.5H2O}n (1), [Zn(DTA)(1, 4-BMIB)0.5(H2O)]n (2), and {[Zn(DTA)(1, 4-BMIN)]·H2O}n (3), have been synthesized by using imidazole derivatives 1, 2, 4, 5-tetra(1H-imidazol-1-yl)benzene (1, 2, 4, 5-TIB), 1, 4-bis(4-methyl-1H-imidazol-1-yl)benzene (1, 4-BMIB), and 1, 4-bis(4-methyl-1H-imidazol-1-yl)naphthalene (1, 4-BMIN) as ligands to react to zinc ions, respectively. Their structures and fluorescent properties were studied. Single crystal X-ray diffraction analysis reveals that all complexes belong to the monoclinic crystal system. Among them, complex 1 based on four-coordinated 1, 2, 4, 5-TIB is a four-connected framework with a point symbol of (62.84). Compared with complex 1, slim 1, 4-BMIB and 1, 4-BMIN ligands with low coordination numbers caused that complexes 2 and 3 are 2-fold interpenetration pcu-type and 3-fold interpenetration dia-type networks, respectively. Furthermore, the fluorescent properties of complexes 1-3 were also studied, and their emission spectra had a significant enhancement and blue shift compared to the emission peak of the ligands.
  • 加载中
    1. [1]

      Zhan D Y, Saeed A, Li Z X, Wang C M, Yu Z W, Wang J F, Zhao N J, Xu W H, Liu J H. Highly Fluorescent Scandium-Tetracarboxylate Frameworks: Selective Detection of Nitro-Aromatic Compounds, Sensing Mechanism, and Their Application[J]. Dalton Trans., 2020,49(48):17737-17744. doi: 10.1039/D0DT03781H

    2. [2]

      Gao M L, Cao X M, Zhang Y Y, Qi M H, Wang S M, Liu L, Han Z B. A Bifunctional Luminescent Europium-Organic Framework for Highly Selective Sensing of Nitrobenzene and 4-Aminophenol[J]. RSC Adv., 2017,7(71):45029-45033. doi: 10.1039/C7RA08885J

    3. [3]

      Hu Z C, Pramanik S, Tan K, Zheng C, Liu W, Zhang X, Chabal Y J, Li J. Selective, Sensitive, and Reversible Detection of Vapor-Phase High Explosives via Two-Dimensional Mapping: A New Strategy for MOF Based Sensors[J]. Cryst Growth Des., 2013,13(10):4204-4207. doi: 10.1021/cg4012185

    4. [4]

      Kaur R, Paul A, Deep A. Highly Sensitive Chemosensing of Trinitrotoluene with Europium Organic Framework/Gold Nanoparticle Composite[J]. Inorg. Chem. Commun., 2014,43:118-120. doi: 10.1016/j.inoche.2014.02.025

    5. [5]

      Roales J, Moscoso F G, Gámez F, Lopes-Costa T, Sousaraei A, Casado S, Castro-Smirnov J R, Cabanillas-Gonzalez J, Almeida J, Queirós C, Cunha-Silva L, Silva A M G, Pedrosa J M. Preparation of Luminescent Metal-Organic Framework Films by Soft-Imprinting for 2, 4-Dinitrotoluene Sensing[J]. Materials, 2017,10(9)992. doi: 10.3390/ma10090992

    6. [6]

      Wu Y, Li Y L, Wu X R, Luo M M, Zou L K, Xu Q X, Cai S G. An Uncommon 3D (3, 8)-Connected Metal-Organic Framework: Luminescence Sensing and Photocatalytic Properties[J]. J. Solid State Chem., 2018,262:256-263. doi: 10.1016/j.jssc.2018.03.031

    7. [7]

      Du Z Q, Li Y P, Wang X X, Wang J, Zhai Q G. Enhanced Electrochemical Performance of Li-Co-BTC Ternary Metal-Organic Frameworks as Cathode Materials for Lithium-Ion Batteries[J]. Dalton Trans., 2019,48(6):2013-2018. doi: 10.1039/C8DT04863K

    8. [8]

      Qu X L, Gui D, Zheng X L, Li R, Han H L, Li X, Li P Z. A Cd-Based Metal-Organic Framework as a Luminance Sensor to Nitrobenzene and Tb(Ⅲ) Ion[J]. Dalton Trans., 2016,45(16):6983-6989. doi: 10.1039/C6DT00162A

    9. [9]

      Sowmehesaraee M S, Ranjbar M, Abedi M, Mozaffari S A. Fabrication of Lead Iodide Perovskite Solar Cells by Incorporating Zirconium, Indium and Zinc Metal-Organic Frameworks[J]. Sol. Energy, 2021,214:138-148. doi: 10.1016/j.solener.2020.12.001

    10. [10]

      Goswami R, Seal N, Dash S R, Tyagi A, Neogi S. Devising Chemically Robust and Cationic Ni(Ⅱ)-MOF with Nitrogen-Rich Micropores for Moisture-Tolerant CO2 Capture: Highly Regenerative and Ultrafast Colorimetric Sensor for TNP and Multiple Oxo-Anions in Water with Theoretical Revelation[J]. ACS Appl. Mater. Interfaces, 2019,11(43):40134-40150. doi: 10.1021/acsami.9b15179

    11. [11]

      Mohanty A, Singh U P, Butcher R J, Das N, Roy P. Synthesis of Fluorescent MOFs: Live-Cell Imaging and Sensing of a Herbicide[J]. CrystEngComm, 2020,22(26):4468-4477. doi: 10.1039/D0CE00490A

    12. [12]

      Shi Z Q, Ji N N, Hu H L. Luminescent Triphenylamine-Based Metal-Organic Frameworks: Recent Advances in Nitroaromatics Detection[J]. Dalton Trans., 2020,49(37):12929-12939. doi: 10.1039/D0DT02213F

    13. [13]

      Gheorghe A, Imaz I, Vlugt J I V D, Maspoch D, Tanase S. Tuning the Supramolecular Isomerism of MOF-74 by Controlling the Synthesis Conditions[J]. Dalton Trans., 2019,48(27):10043-10050. doi: 10.1039/C9DT01572H

    14. [14]

      Li J, Zhao Z X, Liu T, Gong Z F, Jin Y H, Sun L B, Qi M. Cu(Ⅱ)-Based Coordination Polymers: Protective Effect on Suppurative Lymphadenitis by Regulating miR-155 and miR -34a Expression in the Lymph Node Cells[J]. J. Coord. Chem., 2021,74(9):1673-1682.

    15. [15]

      Wang Y, Zeng H M, Mao W T, Wang X J, Jiang Z G, Zhan C H, Feng Y L. The Synthesis and Photoluminescence of Three Porous Metal-Organic Frameworks[J]. Inorg. Chem. Commun., 2021,129108613. doi: 10.1016/j.inoche.2021.108613

    16. [16]

      Böhle T, Eissmann F, Weber E, Mertens F O R L. Poly[(μ4-2, 5-dimethoxybenzene-1, 4-dicarboxylato)manganese(Ⅱ)] and Its Zinc(Ⅱ) Analogue: Three-Dimensional Coordination Polymers Containing Unusually Coordinated Metal Centres[J]. Acta Crystallogr. Sect. C, 2011,C67:5-8.

    17. [17]

      Guo Z G, Reddy M V, Goh B M, San A K P, Bao Q, Loh K P. Electrochemical Performance of Graphene and Copper Oxide Composites Synthesized from a Metal-Organic Framework (Cu-MOF)[J]. RSC Adv., 2013,3(41):19051-19056. doi: 10.1039/c3ra43308k

    18. [18]

      Dolomanov O V, Bourhis L J, Gildea R J, Howard J A K, Puschmann H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program[J]. J. Appl. Crystallogr., 2009,42:339-341. doi: 10.1107/S0021889808042726

    19. [19]

      Sheldrick G M. Crystal Structure Refinement with SHELXL[J]. Acta Crystallogr. Sect. C, 2015,C71:3-8.

    20. [20]

      Spek A L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors[J]. Acta Crystallogr. Sect. C, 2015,C71:9-18.

    21. [21]

      Aexandrov E V, Blatov V A, Kochetkov A V, Proserpio D M. Underlying Nets in Three-Periodic Coordination Polymers: Topology, Taxonomy and Prediction from a Computer-Aided Analysis of the Cambridge Structural Database[J]. CrystEngComm, 2011,13(12):3947-3958. doi: 10.1039/c0ce00636j

    22. [22]

      Cui Y, Yue Y, Qian G, Cheng B L. Luminescent Functional Metal-Organic Frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    23. [23]

      TANG L, FU Y H, WANG Y T, WANG H H, WANG J J, HOU X Y, WANG X. Three Complexes Constructed Using 2, 2′ -Oxybis(benzoic acid) and N-Donor Ligands: Syntheses, Structures and Fluorescent Properties[J]. Chinese J. Inorg. Chem., 2020,36(8):1550-1556.  

    24. [24]

      LI Y, ZENG F R, ZHOU F, LI S J. Syntheses, Crystal Structures, Luminescence and Photocatalytic Activity of Cu(Ⅱ), Zn(Ⅱ) and Mn(Ⅱ) Coordination Polymers Based on Ether-Bridged Carboxylic Acids[J]. Chinese J. Inorg. Chem., 2020,36(11):2124-2134. doi: 10.11862/CJIC.2020.243 

  • 加载中
    1. [1]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    2. [2]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    3. [3]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Dong-Ling Kuang Song Chen Shaoru Chen Yong-Jie Liao Ning Li Lai-Hon Chung Jun He . 2D Zirconium-based metal-organic framework/bismuth(III) oxide nanorods composite for electrocatalytic CO2-to-formate reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100301-100301. doi: 10.1016/j.cjsc.2024.100301

    12. [12]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    13. [13]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    14. [14]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    15. [15]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    16. [16]

      Ruowen Liang Chao Zhang Guiyang Yan . Enhancing CO2 cycloaddition through ligand functionalization: A case study of UiO-66 metal-organic frameworks. Chinese Journal of Structural Chemistry, 2024, 43(2): 100211-100211. doi: 10.1016/j.cjsc.2023.100211

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    20. [20]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

Metrics
  • PDF Downloads(15)
  • Abstract views(694)
  • HTML views(122)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return