Citation: Jing-Tao LI, Yang MA, Shao-Xian LI, Ye-Ming HE, Yong-Zhe ZHANG. Defect Engineering of Two - Dimensional Transition Metal Dichalcogenides[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 993-1015. doi: 10.11862/CJIC.2022.120 shu

Defect Engineering of Two - Dimensional Transition Metal Dichalcogenides

  • Corresponding author: Yang MA, mayang@bjut.edu.cn
  • Received Date: 24 October 2021
    Revised Date: 26 March 2022

Figures(17)

  • Due to their characteristics of atomic-scale thickness, 1-2 eV varying band gaps with the number of layers, high carrier mobility (for example, the carrier mobility of MoS2 can reach 200 cm2·V-1·s-1), etc., two-dimensional transition metal dichalcogenides (TMDs) have been regarded as one of the potential candidates in the fields of optics and electronics applications. Compared to their bulk counterparts, the properties of TMDs can be more easily influ- enced by defect engineering due to their ultrathin feature. In this review, based on the introduction of TMDs crystal structure and phase, the defects classification is made according to their dimension. Then from two aspects, defect suppression and repair, as well as defect manufacturing, the latest research progress of defect engineering is summa- rized. On this basis, defect engineering applications in the fields of electronics, optics, magnetism, electrocatalysis, etc. are introduced. Finally, this review discusses the practical problems in defect engineering and prospects the future research and development directions in this domain.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    2. [2]

      Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature[J]. Nano Lett., 2011,11(6):2396-2399. doi: 10.1021/nl200758b

    3. [3]

      Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine Structure Constant Defines Visual Transparency of Graphene[J]. Science, 2008,320(5881):1308-1308. doi: 10.1126/science.1156965

    4. [4]

      Jia X T, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Graphene Edges: A Review of Their Fabrication and Characterization[J]. Nanoscale, 2011,3(1):86-95. doi: 10.1039/C0NR00600A

    5. [5]

      Schwierz F. Graphene Transistors[J]. Nat. Nanotechnol., 2010,5(7):487-496. doi: 10.1038/nnano.2010.89

    6. [6]

      Xia F N, Farmer D B, Lin Y M, Avouris P. Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature[J]. Nano Lett., 2010,10(2):715-718. doi: 10.1021/nl9039636

    7. [7]

      Yao J D, Yang G W. 2D Materials Broadband Photodetectors[J]. Nanoscale, 2020,12(2):454-476. doi: 10.1039/C9NR09070C

    8. [8]

      Hoang A T, Qu K R, Chen X, Ahn J H. Large-Area Synthesis of Transition Metal Dichalcogenides via CVD and Solution-Based Approaches and Their Device Applications[J]. Nanoscale, 2021,13(2):615-633. doi: 10.1039/D0NR08071C

    9. [9]

      Zhang L J, Zunger A. Evolution of Electronic Structure as a Function of Layer Thickness in Group-ⅥB Transition Metal Dichalcogenides: Emergence of Localization Prototypes[J]. Nano Lett., 2015,15(2):949-957. doi: 10.1021/nl503717p

    10. [10]

      Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2[J]. Nano Lett., 2012,12(11):5576-5580. doi: 10.1021/nl302584w

    11. [11]

      WANG L, GONG Y J. Research Progress of Intercalation Methods of Two-Dimensional Materials[J]. Chinese Journal of Applied Chemistry, 2020,37(8):855-864.  

    12. [12]

      Xie Y, Liang F, Chi S M, Wang D, Zhong K, Yu H H, Zhang H J, Chen Y X, Wang J Y. Defect Engineering of MoS2 for Room-Temperature Terahertz Photodetection[J]. ACS Appl. Mater. Interfaces, 2020,12(6):7351-7357. doi: 10.1021/acsami.9b21671

    13. [13]

      Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S. Ultrabroadband and High-Detectivity Photodetector Based on WS2/Ge Heterojunction through Defect Engineering and Interface Passivation[J]. ACS Nano, 2021,15(6):10119-10129. doi: 10.1021/acsnano.1c02007

    14. [14]

      Li X Z, Fang Y Y, Wang J, Fang H Y, Xi S B, Zhao X X, Xu D Y, Xu H M, Yu W, Hai X, Chen C, Yao C H, Tao H B, Howe A G R, Pennycook S J, Liu B, Lu J, Su C L. Ordered Clustering of Single Atomic Te Vacancies in Atomically Thin PtTe2 Promotes Hydrogen Evolution Catalysis[J]. Nat. Commun., 2021,12(1)2351. doi: 10.1038/s41467-021-22681-4

    15. [15]

      Wang X, Zhang Y W, Si H N, Zhang Q H, Wu J, Gao L, Wei X F, Sun Y, Liao Q L, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS2[J]. J. Am. Chem. Soc., 2020,142(9):4298-4308. doi: 10.1021/jacs.9b12113

    16. [16]

      GAO L F, SONG Z Q, SUN Z H, LI F H, HAN D X, NIU L. Application and Development of Novel Two-Dimensional Nanomaterials in Electrochemistry[J]. Chinese Journal of Applied Chemistry, 2018,35(3):247-258.  

    17. [17]

      Wang Z, Sun J, Wang H L, Lei Y M, Xie Y, Wang G F, Zhao Y, Li X B, Xu H, Yang X B, Feng L P, Ma X H. 2H/1T' Phase WS2(1-x)Te2x Alloys Grown by Chemical Vapor Deposition with Tunable Band Structures[J]. Appl. Surf. Sci., 2020,504144371. doi: 10.1016/j.apsusc.2019.144371

    18. [18]

      Tang B J, Zhou J D, Sun P P, Wang X W, Bai L C, Dan J D, Yang J F, Zhou K, Zhao X X, Pennycook S J, Liu Z. Phase-Controlled Synthesis of Monolayer Ternary Telluride with a Random Local Displacement of Tellurium[J]. Adv. Mater., 2019,31(23)1900862. doi: 10.1002/adma.201900862

    19. [19]

      Yu P, Lin J H, Sun L F, Le Q L, Yu X C, Gao G H, Hsu C H, Wu D, Chang T R, Zeng Q S, Liu F C, Wang Q J, Jeng H T, Lin H, Trampert A, Shen Z X, Suenaga K, Liu Z. Metal-Semiconductor Phase-Transition in WSe2(1-x)Te2x Monolayer[J]. Adv. Mater., 2017,29(4)1603991. doi: 10.1002/adma.201603991

    20. [20]

      Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y B, Ko C, Jang C, Sun Y H, Sinclair R, Chang J, Tongay S, Wu J Q. Doping Against the Native Propensity of MoS2: Degenerate Hole Doping by Cation Substitution[J]. Nano Lett., 2014,14(12):6976-6982. doi: 10.1021/nl503251h

    21. [21]

      Azcatl A, Qin X Y, Prakash A, Zhang C X, Cheng L X, Wang Q X, Lu N, Kim M J, Kim J, Cho K, Addou R, Hinkle C L, Appenzeller J, Wallace R M. Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure[J]. Nano Lett., 2016,16(9):5437-5443. doi: 10.1021/acs.nanolett.6b01853

    22. [22]

      Rathod U P, Egede J, Voevodin A A, Shepherd N D. Extrinsic p-Type Doping of Few Layered WS2 Films with Niobium by Pulsed Laser Deposition[J]. Appl. Phys. Lett., 2018,113(6)062106. doi: 10.1063/1.5040119

    23. [23]

      Tang J, Wei Z, Wang Q Q, Wang Y, Han B, Li X M, Huang B Y, Liao M Z, Liu J Y, Li N, Zhao Y C, Shen C, Guo Y T, Bai X D, Gao P, Yang W, Chen L, Wu K H, Yang R, Shi D X, Zhang G Y. In Situ Oxygen Doping of Monolayer MoS2 for Novel Electronics[J]. Small, 2020,162004276. doi: 10.1002/smll.202004276

    24. [24]

      Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L J, Wang B G, Sun L T, Wang J L, Zhang G, Zhang Y W, Shi Y, Wang X R. Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering[J]. Nat. Commun., 2014,5(1)5290. doi: 10.1038/ncomms6290

    25. [25]

      Miao Y P, Huang Y H, Bao H W, Xu K W, Ma F, Chu P K. Tunable Magnetic Coupling in Mn-Doped Monolayer MoS2 under Lattice Strain[J]. J. Phys.-Condens. Matter, 2018,30(21)215801. doi: 10.1088/1361-648X/aabd46

    26. [26]

      Zhang F X, Fan X L, Hu Y, An Y R, Luo Z F. Magnetic Semiconducting and Strain-Induced Semiconducting-Metallic Transition in Cu-Doped Single-Layer WSe2[J]. J. Mater. Sci., 2018,54(1):529-539.

    27. [27]

      Yun W S, Lee J D. Unexpected Strong Magnetism of Cu Doped Single-Layer MoS2 and Its Origin[J]. Phys. Chem. Chem. Phys., 2014,16(19):8990-8996. doi: 10.1039/C4CP00247D

    28. [28]

      Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A, Terrones M. Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides[J]. 2D Mater., 2016,3(2)022002. doi: 10.1088/2053-1583/3/2/022002

    29. [29]

      Wang H T, Yuan H T, Hong S S, Li Y B, Cui Y. Physical and Chemical Tuning of Two-Dimensional Transition Metal Dichalcogenides[J]. Chem. Soc. Rev., 2015,44(9):2664-2680. doi: 10.1039/C4CS00287C

    30. [30]

      Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z. A Library of Atomically Thin Metal Chalcogenides[J]. Nature, 2018,556(7701):355-359. doi: 10.1038/s41586-018-0008-3

    31. [31]

      Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D Transition Metal Dichalcogenides[J]. Nat. Rev. Mater., 2017,2(8):1-15.

    32. [32]

      Voiry D, Mohite A, Chhowalla M. Phase Engineering of Transition Metal Dichalcogenides[J]. Chem. Soc. Rev., 2015,44(9):2702-2712. doi: 10.1039/C5CS00151J

    33. [33]

      Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets[J]. Nat. Chem., 2013,5(4):263-275. doi: 10.1038/nchem.1589

    34. [34]

      Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide[J]. Nano Lett., 2013,13(6):2615-2622. doi: 10.1021/nl4007479

    35. [35]

      Komsa H P, Krasheninnikov A V. Native Defects in Bulk And Monolayer MoS2 from First Principles[J]. Phys. Rev. B, 2015,91(12)125304. doi: 10.1103/PhysRevB.91.125304

    36. [36]

      Rhodes D, Chae S H, Ribeiro-Palau R, Hone J. Disorder in van der Waals Heterostructures of 2D Materials[J]. Nat. Mater., 2019,18(6):541-549. doi: 10.1038/s41563-019-0366-8

    37. [37]

      Komsa H P, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V. From Point to Extended Defects in Two-Dimensional MoS2: Evolution of Atomic Structure under Electron Irradiation[J]. Phys. Rev. B, 2013,88(3):3239-3246.

    38. [38]

      Schweiger H, Raybaud P, Kresse G, Toulhoat H. Shape and Edge Sites Modifications of MoS2 Catalytic Nanoparticles Induced by Working Conditions: A Theoretical Study[J]. J. Catal., 2002,207(1):76-87. doi: 10.1006/jcat.2002.3508

    39. [39]

      Feng S M, Tan J Y, Zhao S L, Zhang S Q, Khan U, Tang L, Zou X L, Lin J H, Cheng H M, Liu B L. Synthesis of Ultrahigh-Quality Monolayer Molybdenum Disulfide through In Situ Defect Healing with Thiol Molecules[J]. Small, 2020,16(35)2003357. doi: 10.1002/smll.202003357

    40. [40]

      Yang P, Shan Y B, Chen J, Ekoya G, Han J K, Qiu Z J, Sun J J, Chen F, Wang H M, Bao W Z, Hu L G, Zhang R J, Liu R, Cong C X. Remarkable Quality Improvement of As-Grown Monolayer MoS2 by Sulfur Vapor Pretreatment of SiO2/Si Substrates[J]. Nanoscale, 2020,12(3):1958-1966. doi: 10.1039/C9NR09129G

    41. [41]

      Chen Y F, Deng W J, Chen X Q, Wu Y, Shi J W, Zheng J Y, Chu F H, Liu B Y, An B X, You C Y, Jiao L Y, Liu X F, Zhang Y Z. Carrier Mobility Tuning of MoS2 by Strain Engineering in CVD Growth Process[J]. Nano Res., 2020,14(7):2314-2320.

    42. [42]

      An B X, Ma Y, Zhang G Q, You C Y, Zhang Y Z. Controlled Synthesis of Few-Layer SnSe2 by Chemical Vapor Deposition[J]. RSC Adv., 2020,10(69):42157-42163. doi: 10.1039/D0RA08360G

    43. [43]

      Zhang J M, Qian Y H, Nan H Y, Gu X F, Xiao S Q. Large-Scale MoS2(1-x)Se2x Monolayers Synthesized by Confined-Space CVD[J]. Nanotechnology, 2021,32(35)355601. doi: 10.1088/1361-6528/ac0026

    44. [44]

      Phan H D, Jung J, Kim Y, Huynh V N, Lee C. Large-Area Single-Crystal Graphene Grown on a Recrystallized Cu(111) Surface by Using a Hole-Pocket Method[J]. Nanoscale, 2016,8(28):13781-13789. doi: 10.1039/C6NR04416F

    45. [45]

      He Y M, Ma Y, Li X H, Zhang Y Z. All-Inorganic Perovskite Nanosheet Fabrication Under Synergistic Effect for Integrated Optoelectronics with Strong Light-Matter Interactions[J]. ACS Appl. Nano Mater., 2021,4(3):2634-2641. doi: 10.1021/acsanm.0c03269

    46. [46]

      Li J, Wang S, Jiang Q, Qian H J, Hu S K, Kang H, Chen C, Zhan X Y, Yu A B, Zhao S W, Zhang Y H, Chen Z Y, Sui Y P, Qiao S, Yu G H, Peng S G, Jin Z, Liu X Y. Single-Crystal MoS2 Monolayer Wafer Grown on Au(111) Film Substrates[J]. Small, 2021,17(30)2100743. doi: 10.1002/smll.202100743

    47. [47]

      Zhang X T, Zhang F, Wang Y X, Schulman D S, Zhang T Y, Bansal A, Alem N, Das S, Crespi V H, Terrones M, Redwing J M. Defect-Controlled Nucleation and Orientation of WSe2 on HBN: A Route to Single-Crystal Epitaxial Monolayers[J]. ACS Nano, 2019,13(3):3341-3352. doi: 10.1021/acsnano.8b09230

    48. [48]

      Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide Semiconductor Single Crystals on Sapphire[J]. Nat. Nanotechnol., 2021,12(11):1201-1207.

    49. [49]

      Yang P F, Zhang S Q, Pan S Y, Tang B, Liang Y, Zhao X X, Zhang Z P, Shi J P, Huan Y H, Shi Y P, Pennycook S J, Ren Z F, Zhang G H, Chen Q, Zou X L, Liu Z F, Zhang Y F. Epitaxial Growth of Centimeter-Scale Single-Crystal MoS2 Monolayer on Au(111)[J]. ACS Nano, 2020,14(4):5036-5045. doi: 10.1021/acsnano.0c01478

    50. [50]

      Fu D Y, Zhao X X, Zhang Y Y, Li L J, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T H, Ding Z J, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P. Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride[J]. J. Am. Chem. Soc., 2017,139(27):9392-9400. doi: 10.1021/jacs.7b05131

    51. [51]

      Xu X L, Pan Y, Liu S, Han B, Gu P F, Li S H, Xu W J, Peng Y X, Han Z, Chen J, Gao P, Ye Y. Seeded 2D Epitaxy of Large-Area Single-Crystal Films of the van der Waals Semiconductor 2H MoTe2[J]. Science, 2021,372(6538):195-200. doi: 10.1126/science.abf5825

    52. [52]

      Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R. Hopping Transport through Defect-Induced Localized States in Molybdenum Disulphide[J]. Nat. Commun., 2013,4(1)2642. doi: 10.1038/ncomms3642

    53. [53]

      Lehnert T, Lehtinen O, Algara-Siller G, Kaiser U. Electron Radiation Damage Mechanisms in 2D MoSe2[J]. Appl. Phys. Lett., 2017,110(3)033106. doi: 10.1063/1.4973809

    54. [54]

      Zan R, Ramasse Q M, Jalil R, Georgiou T, Bangert U, Novoselov K S. Control of Radiation Damage in MoS2 by Graphene Encapsulation[J]. ACS Nano, 2013,7(11):10167-10174. doi: 10.1021/nn4044035

    55. [55]

      Mitterreiter E, Schuler B, Cochrane K A, Wurstbauer U, Weber-Bargioni A, Kastl C, Holleitner A W. Atomistic Positioning of Defects in Helium Ion Treated Single-Layer MoS2[J]. Nano Lett., 2020,20(6):4437-4444. doi: 10.1021/acs.nanolett.0c01222

    56. [56]

      Zhao Q H, Frisenda R, Gant P, De Lara D P, Munuera C, Garcia-Hernandez M, Niu Y, Wang T, Jie W Q, Castellanos-Gomez A. Toward Air Stability of Thin Gase Devices: Avoiding Environmental and Laser-Induced Degradation by Encapsulation[J]. Adv. Funct. Mater., 2018,28(47)1805304. doi: 10.1002/adfm.201805304

    57. [57]

      Gao J, Li B C, Tan J W, Chow P, Lu T M, Koratkar N. Aging of Transition Metal Dichalcogenide Monolayers[J]. ACS Nano, 2016,10(2):2628-2635. doi: 10.1021/acsnano.5b07677

    58. [58]

      Mahyavanshi R D, Kalita G, Singh R, Kondo M, Dewa T, Kawahara T, Umeno M, Tanemura M. Encapsulation of Transition Metal Dichalcogenides Crystals with Room Temperature Plasma Deposited Carbonaceous Films[J]. RSC Adv., 2017,7(65):41136-41143. doi: 10.1039/C7RA06816F

    59. [59]

      Pace S, Martini L, Convertino D, Keum D H, Forti S, Pezzini S, Fabbri F, Miseikis V, Coletti C. Synthesis of Large-Scale Monolayer 1T'-MoTe2 and Its Stabilization via Scalable hBN Encapsulation[J]. ACS Nano, 2021,15(3):4213-4225. doi: 10.1021/acsnano.0c05936

    60. [60]

      Kim C K, Jeong E G, Kim E, Song J G, Kim Y, Woo W J, Lee M K, Bae H, Jeon S B, Kim H, Choi K C, Choi Y K. Highly Stable 2D Material (2DM) Field-Effect Transistors (Fets) with Wafer-Scale Multidyad Encapsulation[J]. Nanotechnology, 2017,28(5)055203. doi: 10.1088/1361-6528/aa5235

    61. [61]

      Canton-Vitoria R, Sayed-Ahmad-Baraza Y, Humbert B, Arenal R, Ewels C P, Tagmatarchis N. Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging[J]. Nanomaterials, 2020,10(2)363. doi: 10.3390/nano10020363

    62. [62]

      Budania P, Baine P, Montgomery J, Mcgeough C, Cafolla T, Modreanu M, Mcneill D, Mitchell N, Hughes G, Hurley P. Long-Term Stability of Mechanically Exfoliated MoS2 Flakes[J]. MRS Commun., 2017,7(4):813-818. doi: 10.1557/mrc.2017.105

    63. [63]

      Yao K, Banerjee D, Femi-Oyetoro J D, Hathaway E, Jiang Y, Squires B, Jones D C, Neogi A, Cui J B, Philipose U, Agarwal A, Lu E, Yao S, Khare M, Ojo I A, Marshall G, Perez J. Growth of Monolayer MoS2 on Hydrophobic Substrates as a Novel and Feasible Method to Prevent the Ambient Degradation of Monolayer MoS2[J]. MRS Adv., 2020,5(52):2707-2715.

    64. [64]

      Foörster A, Gemming S, Seifert G, Tomanek D. Chemical and Electronic Repair Mechanism of Defects in MoS2 Monolayers[J]. ACS Nano, 2017,11(10):9989-9996. doi: 10.1021/acsnano.7b04162

    65. [65]

      Roy S, Choi W, Jeon S, Kim D H, Kim H, Yun S J, Lee Y, Lee J, Kim Y M, Kim J. Atomic Observation of Filling Vacancies in Monolayer Transition Metal Sulfides by Chemically Sourced Sulfur Atoms[J]. Nano Lett., 2018,18(7):4523-4530. doi: 10.1021/acs.nanolett.8b01714

    66. [66]

      Makarova M, Okawa Y, Aono M. Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2 (0001), Followed by Vacancy Repair via S-C Dissociation[J]. J. Phys. Chem. C, 2012,116(42):22411-22416. doi: 10.1021/jp307267h

    67. [67]

      Li Q, Zhao Y H, Ling C Y, Yuan S J, Chen Q, Wang J L. Towards a Comprehensive Understanding of the Reaction Mechanisms between Defective MoS2 and Thiol Molecules[J]. Angew. Chem. Int. Ed., 2017,56(35):10501-10505. doi: 10.1002/anie.201706038

    68. [68]

      Zhang X K, Liao Q L, Liu S, Kang Z, Zhang Z, Du J L, Li F, Zhang S H, Xiao J K, Liu B S, Ou Y, Liu X Z, Gu L, Zhang Y. Poly(4-styrene-sulfonate)-Induced Sulfur Vacancy Self-Healing Strategy for Monolayer MoS2 Homojunction Photodiode[J]. Nat. Commun., 2017,8(1)15881. doi: 10.1038/ncomms15881

    69. [69]

      Mahjouri-Samani M, Liang L B, Oyedele A, Kim Y S, Tian M K, Cross N, Wang K, Lin M W, Boulesbaa A, Rouleau C M, Puretzky A A, Xiao K, Yoon M, Eres G, Duscher G, Sumpter B G, Geohegan D B. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe2-x Crystals[J]. Nano Lett., 2016,16(8):5213-5220. doi: 10.1021/acs.nanolett.6b02263

    70. [70]

      Peto J, Ollar T, Vancso P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B, Tapaszto L. Spontaneous Doping of the Basal Plane of MoS2 Single Layers through Oxygen Substitution under Ambient Conditions[J]. Nat. Chem., 2018,10(12):1246-1251. doi: 10.1038/s41557-018-0136-2

    71. [71]

      Leong W S, Li Y D, Luo X, Nai C T, Quek S Y, Thong J T. Tuning the Threshold Voltage of MoS2 Field-Effect Transistors via Surface Treatment[J]. Nanoscale, 2015,7(24):10823-10831. doi: 10.1039/C5NR00253B

    72. [72]

      Hu S K, Li J, Wang S, Liang Y J, Kang H, Zhang Y H, Chen Z Y, Sui Y P, Yu G H, Peng S G, Jin Z, Liu X Y. Detecting the Repair of Sulfur Vacancies in CVD-Grown MoS2 Domains via Hydrogen Etching[J]. J. Electron. Mater., 2020,49(4):2547-2555. doi: 10.1007/s11664-020-07957-7

    73. [73]

      Yanase T, Uehara F, Naito I, Nagahama T, Shimada T. Healing Sulfur Vacancies in Monolayer MoS2 by High-Pressure Sulfur and Selenium Annealing: Implication for High-Performance Transistors[J]. ACS Appl. Nano Mater., 2020,3(10):10462-10469. doi: 10.1021/acsanm.0c02385

    74. [74]

      Xu X L, Han B, Liu S, Yang S Q, Jia X H, Xu W J, Gao P, Ye Y, Dai L. Atomic-Precision Repair of a Few-Layer 2H-MoTe2 Thin Film by Phase Transition and Recrystallization Induced by a Heterophase Interface[J]. Adv. Mater., 2020,32(23)2000236. doi: 10.1002/adma.202000236

    75. [75]

      Zhang K H, Feng S M, Wang J J, Azcatl A, Lu N, Addou R, Wang N, Zhou C J, Lerach J, Bojan V, Kim M J, Chen L Q, Wallace R M, Terrones M, Zhu J, Robinson J A. Manganese Doping of Monolayer MoS2: The Substrate is Critical[J]. Nano Lett., 2015,15(10):6586-6591. doi: 10.1021/acs.nanolett.5b02315

    76. [76]

      Hayashi Y. Pot Economy and One-Pot Synthesis[J]. Chem. Sci., 2016,7(2):866-880. doi: 10.1039/C5SC02913A

    77. [77]

      Wang B, Xia Y P, Zhang J Q, Komsa H P, Xie M H, Peng Y, Jin C H. Niobium Doping Induced Mirror Twin Boundaries in MBE Grown WSe2 Monolayers[J]. Nano Res., 2020,13(7):1889-1896. doi: 10.1007/s12274-020-2639-6

    78. [78]

      Mouri S, Miyauchi Y, Matsuda K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping[J]. Nano Lett., 2013,13(12):5944-5948. doi: 10.1021/nl403036h

    79. [79]

      Qin S, Lei W W, Liu D, Chen Y. In-Situ and Tunable Nitrogen-Doping of MoS2 Nanosheets[J]. Sci. Rep., 2014,4(1)7582.

    80. [80]

      Tang B H, Yu Z G, Huang L, Chai J W, Wong S L, Deng J, Yang W F, Gong H, Wang S J, Ang K W, Zhang Y W, Chi D Z. Direct n-to p-Type Channel Conversion in Monolayer/Few-Layer WS2 Field-Effect Transistors by Atomic Nitrogen Treatment[J]. ACS Nano, 2018,12(3):2506-2513. doi: 10.1021/acsnano.7b08261

    81. [81]

      Lin Y C, Dumcenco D O, Komsa H P, Niimi Y, Krasheninnikov A V, Huang Y S, Suenaga K. Properties of Individual Dopant Atoms in Single-Layer MoS2: Atomic Structure, Migration, and Enhanced Reactivity[J]. Adv. Mater., 2014,26(18):2857-2861. doi: 10.1002/adma.201304985

    82. [82]

      Wang S Y, Ko T S, Huang C C, Lin D Y, Huang Y S. Optical and Electrical Properties of MoS2 and Fe-Doped MoS2[J]. Jpn. J. Appl. Phys., 2014,53(4S)04E.

    83. [83]

      Zou J Y, Cai Z Y, Lai Y J, Tan J Y, Zhang R J, Feng S M, Wang G, Lin J H, Liu B L, Cheng H M. Doping Concentration Modulation in Vanadium-Doped Monolayer Molybdenum Disulfide for Synaptic Transistors[J]. ACS Nano, 2021,15(4):7340-7347. doi: 10.1021/acsnano.1c00596

    84. [84]

      Li S Y, Chen X Q, Liu F M, Chen Y F, Liu B Y, Deng W J, An B X, Chu F H, Zhang G Q, Li S L, Li X H, Zhang Y Z. Enhanced Performance of a CVD MoS2 Photodetector by Chemical In Situ N-Type Doping[J]. ACS Appl. Mater. Interfaces, 2019,11(12):11636-11644. doi: 10.1021/acsami.9b00856

    85. [85]

      An B X, Ma Y, Chu F H, Li X H, Wu Y, You C Y, Deng W J, Li S Y, Zhang Y Z. Growth of Centimeter Scale Nb1-xWxSe2 Monolayer Film by Promoter Assisted Liquid Phase Chemical Vapor Deposition[J]. Nano Res., 2021,15(3):2608-2615.

    86. [86]

      Zhang J, Zhu Y, Tebyetekerwa M, Li D L, Liu D, Lei W W, Wang L F, Zhang Y P, Lu Y R. Vanadium-Doped Monolayer MoS2 with Tunable Optical Properties for Field-Effect Transistors[J]. ACS Appl. Nano Mater., 2020,4(1):769-777.

    87. [87]

      Cai Z Y, Shen T Z, Zhu Q, Feng S M, Yu Q M, Liu J M, Tang L, Zhao Y, Wang J W, Liu B L, Cheng H M. Dual-Additive Assisted Chemical Vapor Deposition for the Growth of Mn-Doped 2D MoS2 with Tunable Electronic Properties[J]. Small, 2020,16(15)1903181. doi: 10.1002/smll.201903181

    88. [88]

      Tang L, Xu R Z, Tan J Y, Luo Y T, Zou J Y, Zhang Z T, Zhang R J, Zhao Y, Lin J H, Zou X L, Liu B L, Cheng H M. Modulating Electronic Structure of Monolayer Transition Metal Dichalcogenides by Substitutional Nb-Doping[J]. Adv. Funct. Mater., 2020,31(5)2006941.

    89. [89]

      Qin Z Y, Loh L, Wang J Y, Xu X M, Zhang Q, Haas B, Alvarez C, Okuno H, Yong J Z, Schultz T, Koch N, Dan J D, Pennycook S J, Zeng D, Bosman M, Eda G. Growth of Nb-Doped Monolayer WS2 by Liquid-Phase Precursor Mixing[J]. ACS Nano, 2019,13(9):10768-10775. doi: 10.1021/acsnano.9b05574

    90. [90]

      Loh L, Chen Y F, Wang J Y, Yin X M, Tang C S, Zhang Q, Watanabe K, Taniguchi T, Wee A T, Bosman M, Quek S Y, Eda G. Impurity-Induced Emission in Re-Doped WS2 Monolayers[J]. Nano Lett., 2021,21(12):5293-5300. doi: 10.1021/acs.nanolett.1c01439

    91. [91]

      Kozhakhmetov A, Schuler B, Tan A M Z, Cochrane K A, Nasr J R, El-Sherif H, Bansal A, Vera A, Bojan V, Redwing J M, Bassim N, Das S, Hennig R G, Weber-Bargioni A, Robinson J A. Scalable Substitutional Re-Doping and Its Impact on the Optical and Electronic Properties of Tungsten Diselenide[J]. Adv. Mater., 2020,32(50)2005159. doi: 10.1002/adma.202005159

    92. [92]

      Ogura H, Kaneda M, Nakanishi Y, Nonoguchi Y, Pu J, Ohfuchi M, Irisawa T, Lim H E, Endo T, Yanagi K, Takenobu T, Miyata Y. Air-Stable, Efficient Electron Doping of Monolayer MoS2 by Salt-Crown Ether Treatment[J]. Nanoscale, 2021,13(19):8784-8789. doi: 10.1039/D1NR01279G

    93. [93]

      Chee S S, Oh C, Son M, Son G C, Jang H, Yoo T J, Lee S, Lee W, Hwang J Y, Choi H, Lee B H, Ham M H. Sulfur Vacancy-Induced Reversible Doping of Transition Metal Disulfides via Hydrazine Treatment[J]. Nanoscale, 2017,9(27):9333-9339. doi: 10.1039/C7NR01883E

    94. [94]

      Iqbal M W, Elahi E, Amin A, Aftab S, Aslam I, Hussain G, Shehzad M A. A Facile Route to Enhance the Mobility of MoTe2 Field Effect Transistor via Chemical Doping[J]. Superlattices Microstruct., 2020,147106698. doi: 10.1016/j.spmi.2020.106698

    95. [95]

      Ji H G, Solis-Fernandez P, Yoshimura D, Maruyama M, Endo T, Miyata Y, Okada S, Ago H. Chemically Tuned p-and n-Type WSe2 Monolayers with High Carrier Mobility for Advanced Electronics[J]. Adv. Mater., 2019,31(42)1903613. doi: 10.1002/adma.201903613

    96. [96]

      Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, Ye P D. Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2[J]. Nano Lett., 2014,14(11):6275-6280. doi: 10.1021/nl502603d

    97. [97]

      Jiang J F, Zhang Q H, Wang A Z, Zhang Y, Meng F Q, Zhang C C, Feng X J, Feng Y P, Gu L, Liu H, Han L. A Facile and Effective Method for Patching Sulfur Vacancies of WS2 via Nitrogen Plasma Treatment[J]. Small, 2019,15(36)1901791. doi: 10.1002/smll.201901791

    98. [98]

      Jin W, Zeng X B, Guo Z Y, Zeng Y, Wang W Z, Zeng Y R, Hu Y S, Xiao Y H, Lu J C, Lu J J, Wang J H. Optoelectronic Properties of Lateral MoS2 p-n Homojunction Implemented by Selective p-Type Doping Using Nitrogen Plasma[J]. J. Phys. D: Appl. Phys., 2020,53(40)405102. doi: 10.1088/1361-6463/ab985d

    99. [99]

      Liu M X, Shi J P, Li Y C, Zhou X B, Ma D L, Qi Y, Zhang Y F, Liu Z F. Temperature-Triggered Sulfur Vacancy Evolution in Monolayer MoS2/Graphene Heterostructures[J]. Small, 2017,13(40)1602967. doi: 10.1002/smll.201602967

    100. [100]

      Mendes R G, Pang J B, Bachmatiuk A, Ta H Q, Zhao L, Gemming T, Fu L, Liu Z F, Rummeli M H. Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures[J]. ACS Nano, 2019,13(2):978-995.

    101. [101]

      Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C T, Barja S, Koch R J, Ogletree D F, Aloni S, Schwartzberg A M, Neaton J B, Louie S G, Weber-Bargioni A. Large Spin-Orbit Splitting of Deep In-Gap Defect States of Engineered Sulfur Vacancies in Monolayer WS 2[J]. Phys. Rev. Lett., 2019,123(7)076801. doi: 10.1103/PhysRevLett.123.076801

    102. [102]

      Chua R, Yang J, He X Y, Yu X J, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S. Can Reconstructed Se-Deficient Line Defects in Monolayer VSe2 Induce Magnetism? Adv[J]. Mater., 2020,32(24)2000693.

    103. [103]

      Huang B J, Tian F, Shen Y D, Zheng M R, Zhao Y S, Wu J, Liu Y, Pennycook S J, Thong J T L. Selective Engineering of Chalcogen Defects in MoS2 by Low-Energy Helium Plasma[J]. ACS Appl. Mater. Interfaces, 2019,11(27):24404-24411. doi: 10.1021/acsami.9b05507

    104. [104]

      Leiter R, Li Y L, Kaiser U. In-Situ Formation and Evolution of Atomic Defects in Monolayer WSe2 under Electron Irradiation[J]. Nanotechnology, 2020,31(49)495704. doi: 10.1088/1361-6528/abb335

    105. [105]

      Wang S S, Lee G D, Lee S, Yoon E, Warner J H. Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2[J]. ACS Nano, 2016,10(5):5419-5430. doi: 10.1021/acsnano.6b01673

    106. [106]

      Egerton R F, Li P, Malac M. Radiation Damage in the TEM and SEM[J]. Micron, 2004,35(6):399-409. doi: 10.1016/j.micron.2004.02.003

    107. [107]

      Fujisawa K, Carvalho B R, Zhang T Y, Perea-Lopez N, Lin Z, Carozo V, Ramos S L L M, Kahn E, Bolotsky A, Liu H, Elias A L, Terrones M. Quantification and Healing Of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects[J]. ACS Nano, 2021,15(6):9658-9669. doi: 10.1021/acsnano.0c10897

    108. [108]

      Shim J, Oh A, Kang D H, Oh S, Jang S K, Jeon J, Jeon M H, Kim M, Choi C, Lee J, Lee S, Yeom G Y, Song Y J, Park J H. High-Performance 2D Rhenium Disulfide (ReS2) Transistors and Photodetectors by Oxygen Plasma Treatment[J]. Adv. Mater., 2016,28(32):6985-6992. doi: 10.1002/adma.201601002

    109. [109]

      Wu Z T, Zhao W W, Jiang J, Zheng T, You Y M, Lu J P, Ni Z H. Defect Activated Photoluminescence in WSe2 Monolayer[J]. J. Phys. Chem. C, 2017,121(22):12294-12299. doi: 10.1021/acs.jpcc.7b03585

    110. [110]

      Chee S S, Lee W J, Jo Y R, Cho M K, Chun D, Baik H, Kim B J, Yoon M H, Lee K, Ham M H. Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays[J]. Adv. Funct. Mater., 2020,30(11)1908147. doi: 10.1002/adfm.201908147

    111. [111]

      Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H. Phase Patterning for Ohmic Homojunction Contact in MoTe2[J]. Science, 2015,349(6248):625-628. doi: 10.1126/science.aab3175

    112. [112]

      Allen L C. Electronegativity is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms[J]. J. Am. Chem. Soc., 1989,111(25):9003-9014. doi: 10.1021/ja00207a003

    113. [113]

      Gao L, Liao Q L, Zhang X K, Liu X Z, Gu L, Liu B S, Du J L, Ou Y, Xiao J K, Kang Z, Zhang Z, Zhang Y. Defect-Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters[J]. Adv. Mater., 2020,32(2)1906646. doi: 10.1002/adma.201906646

    114. [114]

      Zhang X K, Liao Q L, Kang Z, Liu B S, Liu X Z, Ou Y, Xiao J K, Du J L, Liu Y H, Gao L, Gu L, Hong M Y, Yu H H, Zhang Z, Duan X F, Zhang Y. Hidden Vacancy Benefit in Monolayer 2D Semiconductors[J]. Adv. Mater., 2021,33(7)2007051. doi: 10.1002/adma.202007051

    115. [115]

      He Y M, Tang P Y, Hu Z L, He Q Y, Zhu C, Wang L Q, Zeng Q S, Golani P, Gao G H, Fu W, Huang Z Q, Gao C T, Xia J, Wang X L, Wang X W, Zhu C, Ramasse Q M, Zhang A, An B X, Zhang Y Z, Marti-Sanchez S, Morante J R, Wang L, Tay B K, Yakobson B I, Trampert A, Zhang H, Wu M H, Wang Q J, Arbiol J, Liu Z. Engineering Grain Boundaries at the 2D Limit for the Hydrogen Evolution Reaction[J]. Nat. Commun., 2020,11(1)57. doi: 10.1038/s41467-019-13631-2

    116. [116]

      Liu L X, Ye K, Lin C Q, Jia Z Y, Xue T Y, Nie A M, Cheng Y C, Xiang J Y, Mu C P, Wang B C, Wen F S, Zhai K, Zhao Z S, Gong Y J, Liu Z Y, Tian Y J. Grain-Boundary-Rich Polycrystalline Monolayer WS2 Film for Attomolar-Level Hg2+ Sensors[J]. Nat. Commun., 2021,12(1)3870. doi: 10.1038/s41467-021-24254-x

    117. [117]

      Zhao X X, Fu D Y, Ding Z J, Zhang Y Y, Wan D Y, Tan S J R, Chen Z X, Leng K, Dan J D, Fu W, Geng D C, Song P, Du Y H, Venkatesan T, Pantelides S T, Pennycook S J, Zhou W, Loh K P. Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film[J]. Nano Lett., 2018,18(1):482-490. doi: 10.1021/acs.nanolett.7b04426

    118. [118]

      Liu L X, Ye K, Zhan Q, Xue T Y, Zhai K, Cheng Y C, Jia Z Y, Nie A, Xiang J Y, Mu C P, Wang B C, Wen F S, Zhao Z S, Gong Y J, Tian Y J, Liu Z Y. Ultrasensitive Biochemical Sensors Based on Controllably Grown Films of High-Density Edge-Rich Multilayer WS 2 Islands[J]. Sens. Actuators B: Chem., 2022,353131081. doi: 10.1016/j.snb.2021.131081

    119. [119]

      Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers[J]. Nano Lett., 2013,13(3):1341-1347. doi: 10.1021/nl400258t

    120. [120]

      Huang L B, Zhao L, Zhang Y, Chen Y Y, Zhang Q H, Luo H, Zhang X, Tang T, Gu L, Hu J S. Self-Limited on-Site Conversion of MoO3 Nanodots into Vertically Aligned Ultrasmall Monolayer MoS2 for Efficient Hydrogen Evolution[J]. Adv. Energy Mater., 2018,8(21)1800734. doi: 10.1002/aenm.201800734

    121. [121]

      Schmidt H, Wang S F, Chu L Q, Toh M L, Kumar R, Zhao W J, Castro Neto A H, Martin J, Adam S, Özyilmaz B, Eda G. Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition[J]. Nano Lett., 2014,14(4):1909-1913. doi: 10.1021/nl4046922

    122. [122]

      Jadwiszczak J, O'callaghan C, Zhou Y B, Fox D S, Weitz E, Keane D, Cullen C P, O'reilly I, Downing C, Shmeliov A, Maguire P, Gough J J, Mcguinness C, Ferreira M S, Bradley A L, Boland J J, Duesberg G S, Nicolosi V, Zhang H Z. Oxide-Mediated Recovery of Field-Effect Mobility in Plasma-Treated MoS2[J]. Sci. Adv., 2018,4(3)eaao5031. doi: 10.1126/sciadv.aao5031

    123. [123]

      Li Z, Liu L, Xu J P. Largely Enhanced Mobility of MoS2 Field-Effect Transistors by Optimizing O2-Plasma Treatment on MoS2[J]. IEEE Trans. Electron Devices, 2021,68(9):4614-4617. doi: 10.1109/TED.2021.3089562

    124. [124]

      Choudhary N, Islam M R, Kang N, Tetard L, Jung Y, Khondaker S I. Two-Dimensional Lateral Heterojunction through Bandgap Engineering of MoS2 via Oxygen Plasma[J]. J. Phys. Condens. Matter, 2016,28(36)364002. doi: 10.1088/0953-8984/28/36/364002

    125. [125]

      Nan H Y, Wang Z L, Wang W H, Liang Z, Lu Y, Chen Q, He D W, Tan P H, Miao F, Wang X R, Wang J L, Ni Z H. Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding[J]. ACS Nano, 2014,8(6):5738-5745. doi: 10.1021/nn500532f

    126. [126]

      Wang W F, Shu H B, Wang J, Cheng Y C, Liang P, Chen X S. Defect Passivation and Photoluminescence Enhancement of Monolayer MoS2 Crystals through Sodium Halide-Assisted Chemical Vapor Deposition Growth[J]. ACS Appl. Mater. Interfaces, 2020,12(8):9563-9571. doi: 10.1021/acsami.9b19224

    127. [127]

      Qian Q K, Peng L T, Perea-Lopez N, Fujisawa K, Zhang K Y, Zhang X T, Choudhury T H, Redwing J M, Terrones M, Ma X D, Huang S X. Defect Creation in WSe2 with a Microsecond Photoluminescence Lifetime by Focused Ion Beam Irradiation[J]. Nanoscale, 2020,12(3):2047-2056. doi: 10.1039/C9NR08390A

    128. [128]

      He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X D, Lu C Y, Pan J W. Single Quantum Emitters in Monolayer Semiconductors[J]. Nat. Nanotechnol., 2015,10(6):497-502. doi: 10.1038/nnano.2015.75

    129. [129]

      Avsar A, Ciarrocchi A, Pizzochero M, Unuchek D, Yazyev O V, Kis A. Defect Induced, Layer-Modulated Magnetism in Ultrathin Metallic PtSe2[J]. Nat. Nanotechnol., 2019,14(7):674-678. doi: 10.1038/s41565-019-0467-1

    130. [130]

      Lin X Q, Ni J. Charge and Magnetic States of Mn-, Fe-, and Co-Doped Monolayer MoS2[J]. J. Appl. Phys., 2014,116(4)044311. doi: 10.1063/1.4891495

    131. [131]

      Muhammad Z, Ali M W, Mir I A, Khan Q U, Zhu L. Copper-Doped Induced Ferromagnetic Half-Metal Zirconium Diselenide Single Crystals[J]. Nanotechnology, 2020,31(23)235704. doi: 10.1088/1361-6528/ab72b3

    132. [132]

      WU W M, ZHANG C S, HOU S G, YANG S B. Synthesis of Mxenes and Mxenes-Containing Composites for Energy Storage and Conversions[J]. Chinese Journal of Applied Chemistry, 2018,35(3):317-327.  

    133. [133]

      WANG H, ZHANG X D, XIE Y. Recent Progresses on the Photoexcitation Processes of Polymeric Carbon Nitride-Based Materials[J]. Chinese J. Inorg. Chem., 2017,33(11):1897-1913. doi: 10.11862/CJIC.2017.249 

    134. [134]

      He F, Liu Y J, Cai Q H, Zhao J X. Size-Dependent Electrocatalytic Activity of ORR/OER on Palladium Nanoclusters Anchored on Defective MoS2 Monolayers[J]. New J. Chem., 2020,44(37):16135-16143. doi: 10.1039/D0NJ03645E

    135. [135]

      Liu X J, Yang H, He J, Liu H X, Song L D, Li L, Luo J. Highly Active, Durable Ultrathin MoTe2 Layers for the Electroreduction of CO 2 to CH4[J]. Small, 2018,14(16)1704049. doi: 10.1002/smll.201704049

    136. [136]

      Gao C, Rao D W, Yang H, Yang S K, Ye J J, Yang S S, Zhang C N, Zhou X C, Jing T Y, Yan X H. Dual Transition-Metal Atoms Doping: An Effective Route to Promote the ORR and OER Activity on MoTe2[J]. New J. Chem., 2021,45(12):5589-5595. doi: 10.1039/D0NJ05606E

    137. [137]

      Xu J Q, Li X D, Liu W, Sun Y F, Ju Z Y, Yao T, Wang C M, Ju H X, Zhu J F, Wei S Q, Xie Y. Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers[J]. Angew. Chem. Int. Ed., 2017,56(31):9121-9125. doi: 10.1002/anie.201704928

  • 加载中
    1. [1]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    2. [2]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    3. [3]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    4. [4]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    5. [5]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    6. [6]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    7. [7]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Hao Wu Zhen Liu Dachang Bai1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020

    12. [12]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    13. [13]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    17. [17]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    20. [20]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

Metrics
  • PDF Downloads(119)
  • Abstract views(3086)
  • HTML views(770)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return