Defect Engineering of Two - Dimensional Transition Metal Dichalcogenides
- Corresponding author: Yang MA, mayang@bjut.edu.cn
Citation: Jing-Tao LI, Yang MA, Shao-Xian LI, Ye-Ming HE, Yong-Zhe ZHANG. Defect Engineering of Two - Dimensional Transition Metal Dichalcogenides[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 993-1015. doi: 10.11862/CJIC.2022.120
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896
Mayorov A S, Gorbachev R V, Morozov S V, Britnell L, Jalil R, Ponomarenko L A, Blake P, Novoselov K S, Watanabe K, Taniguchi T, Geim A K. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature[J]. Nano Lett., 2011,11(6):2396-2399. doi: 10.1021/nl200758b
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M R, Geim A K. Fine Structure Constant Defines Visual Transparency of Graphene[J]. Science, 2008,320(5881):1308-1308. doi: 10.1126/science.1156965
Jia X T, Campos-Delgado J, Terrones M, Meunier V, Dresselhaus M S. Graphene Edges: A Review of Their Fabrication and Characterization[J]. Nanoscale, 2011,3(1):86-95. doi: 10.1039/C0NR00600A
Schwierz F. Graphene Transistors[J]. Nat. Nanotechnol., 2010,5(7):487-496. doi: 10.1038/nnano.2010.89
Xia F N, Farmer D B, Lin Y M, Avouris P. Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature[J]. Nano Lett., 2010,10(2):715-718. doi: 10.1021/nl9039636
Yao J D, Yang G W. 2D Materials Broadband Photodetectors[J]. Nanoscale, 2020,12(2):454-476. doi: 10.1039/C9NR09070C
Hoang A T, Qu K R, Chen X, Ahn J H. Large-Area Synthesis of Transition Metal Dichalcogenides via CVD and Solution-Based Approaches and Their Device Applications[J]. Nanoscale, 2021,13(2):615-633. doi: 10.1039/D0NR08071C
Zhang L J, Zunger A. Evolution of Electronic Structure as a Function of Layer Thickness in Group-ⅥB Transition Metal Dichalcogenides: Emergence of Localization Prototypes[J]. Nano Lett., 2015,15(2):949-957. doi: 10.1021/nl503717p
Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q. Thermally Driven Crossover from Indirect toward Direct Bandgap in 2D Semiconductors: MoSe2 versus MoS2[J]. Nano Lett., 2012,12(11):5576-5580. doi: 10.1021/nl302584w
WANG L, GONG Y J. Research Progress of Intercalation Methods of Two-Dimensional Materials[J]. Chinese Journal of Applied Chemistry, 2020,37(8):855-864.
Xie Y, Liang F, Chi S M, Wang D, Zhong K, Yu H H, Zhang H J, Chen Y X, Wang J Y. Defect Engineering of MoS2 for Room-Temperature Terahertz Photodetection[J]. ACS Appl. Mater. Interfaces, 2020,12(6):7351-7357. doi: 10.1021/acsami.9b21671
Wu D, Guo J W, Wang C Q, Ren X Y, Chen Y S, Lin P, Zeng L H, Shi Z F, Li X J, Shan C X, Jie J S. Ultrabroadband and High-Detectivity Photodetector Based on WS2/Ge Heterojunction through Defect Engineering and Interface Passivation[J]. ACS Nano, 2021,15(6):10119-10129. doi: 10.1021/acsnano.1c02007
Li X Z, Fang Y Y, Wang J, Fang H Y, Xi S B, Zhao X X, Xu D Y, Xu H M, Yu W, Hai X, Chen C, Yao C H, Tao H B, Howe A G R, Pennycook S J, Liu B, Lu J, Su C L. Ordered Clustering of Single Atomic Te Vacancies in Atomically Thin PtTe2 Promotes Hydrogen Evolution Catalysis[J]. Nat. Commun., 2021,12(1)2351. doi: 10.1038/s41467-021-22681-4
Wang X, Zhang Y W, Si H N, Zhang Q H, Wu J, Gao L, Wei X F, Sun Y, Liao Q L, Zhang Z, Ammarah K, Gu L, Kang Z, Zhang Y. Single-Atom Vacancy Defect to Trigger High-Efficiency Hydrogen Evolution of MoS2[J]. J. Am. Chem. Soc., 2020,142(9):4298-4308. doi: 10.1021/jacs.9b12113
GAO L F, SONG Z Q, SUN Z H, LI F H, HAN D X, NIU L. Application and Development of Novel Two-Dimensional Nanomaterials in Electrochemistry[J]. Chinese Journal of Applied Chemistry, 2018,35(3):247-258.
Wang Z, Sun J, Wang H L, Lei Y M, Xie Y, Wang G F, Zhao Y, Li X B, Xu H, Yang X B, Feng L P, Ma X H. 2H/1T' Phase WS2(1-x)Te2x Alloys Grown by Chemical Vapor Deposition with Tunable Band Structures[J]. Appl. Surf. Sci., 2020,504144371. doi: 10.1016/j.apsusc.2019.144371
Tang B J, Zhou J D, Sun P P, Wang X W, Bai L C, Dan J D, Yang J F, Zhou K, Zhao X X, Pennycook S J, Liu Z. Phase-Controlled Synthesis of Monolayer Ternary Telluride with a Random Local Displacement of Tellurium[J]. Adv. Mater., 2019,31(23)1900862. doi: 10.1002/adma.201900862
Yu P, Lin J H, Sun L F, Le Q L, Yu X C, Gao G H, Hsu C H, Wu D, Chang T R, Zeng Q S, Liu F C, Wang Q J, Jeng H T, Lin H, Trampert A, Shen Z X, Suenaga K, Liu Z. Metal-Semiconductor Phase-Transition in WSe2(1-x)Te2x Monolayer[J]. Adv. Mater., 2017,29(4)1603991. doi: 10.1002/adma.201603991
Suh J, Park T E, Lin D Y, Fu D, Park J, Jung H J, Chen Y B, Ko C, Jang C, Sun Y H, Sinclair R, Chang J, Tongay S, Wu J Q. Doping Against the Native Propensity of MoS2: Degenerate Hole Doping by Cation Substitution[J]. Nano Lett., 2014,14(12):6976-6982. doi: 10.1021/nl503251h
Azcatl A, Qin X Y, Prakash A, Zhang C X, Cheng L X, Wang Q X, Lu N, Kim M J, Kim J, Cho K, Addou R, Hinkle C L, Appenzeller J, Wallace R M. Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure[J]. Nano Lett., 2016,16(9):5437-5443. doi: 10.1021/acs.nanolett.6b01853
Rathod U P, Egede J, Voevodin A A, Shepherd N D. Extrinsic p-Type Doping of Few Layered WS2 Films with Niobium by Pulsed Laser Deposition[J]. Appl. Phys. Lett., 2018,113(6)062106. doi: 10.1063/1.5040119
Tang J, Wei Z, Wang Q Q, Wang Y, Han B, Li X M, Huang B Y, Liao M Z, Liu J Y, Li N, Zhao Y C, Shen C, Guo Y T, Bai X D, Gao P, Yang W, Chen L, Wu K H, Yang R, Shi D X, Zhang G Y. In Situ Oxygen Doping of Monolayer MoS2 for Novel Electronics[J]. Small, 2020,162004276. doi: 10.1002/smll.202004276
Yu Z H, Pan Y M, Shen Y T, Wang Z L, Ong Z Y, Xu T, Xin R, Pan L J, Wang B G, Sun L T, Wang J L, Zhang G, Zhang Y W, Shi Y, Wang X R. Towards Intrinsic Charge Transport in Monolayer Molybdenum Disulfide by Defect and Interface Engineering[J]. Nat. Commun., 2014,5(1)5290. doi: 10.1038/ncomms6290
Miao Y P, Huang Y H, Bao H W, Xu K W, Ma F, Chu P K. Tunable Magnetic Coupling in Mn-Doped Monolayer MoS2 under Lattice Strain[J]. J. Phys.-Condens. Matter, 2018,30(21)215801. doi: 10.1088/1361-648X/aabd46
Zhang F X, Fan X L, Hu Y, An Y R, Luo Z F. Magnetic Semiconducting and Strain-Induced Semiconducting-Metallic Transition in Cu-Doped Single-Layer WSe2[J]. J. Mater. Sci., 2018,54(1):529-539.
Yun W S, Lee J D. Unexpected Strong Magnetism of Cu Doped Single-Layer MoS2 and Its Origin[J]. Phys. Chem. Chem. Phys., 2014,16(19):8990-8996. doi: 10.1039/C4CP00247D
Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A, Terrones M. Defect Engineering of Two-Dimensional Transition Metal Dichalcogenides[J]. 2D Mater., 2016,3(2)022002. doi: 10.1088/2053-1583/3/2/022002
Wang H T, Yuan H T, Hong S S, Li Y B, Cui Y. Physical and Chemical Tuning of Two-Dimensional Transition Metal Dichalcogenides[J]. Chem. Soc. Rev., 2015,44(9):2664-2680. doi: 10.1039/C4CS00287C
Zhou J D, Lin J H, Huang X W, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H M, Lei J C, Wu D, Liu F C, Fu Q D, Zeng Q S, Hsu C H, Yang C L, Lu L, Yu T, Shen Z X, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G T, Liu Z. A Library of Atomically Thin Metal Chalcogenides[J]. Nature, 2018,556(7701):355-359. doi: 10.1038/s41586-018-0008-3
Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A. 2D Transition Metal Dichalcogenides[J]. Nat. Rev. Mater., 2017,2(8):1-15.
Voiry D, Mohite A, Chhowalla M. Phase Engineering of Transition Metal Dichalcogenides[J]. Chem. Soc. Rev., 2015,44(9):2702-2712. doi: 10.1039/C5CS00151J
Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H. The Chemistry of Two-Dimensional Layered Transition Metal Dichalcogenide Nanosheets[J]. Nat. Chem., 2013,5(4):263-275. doi: 10.1038/nchem.1589
Zhou W, Zou X L, Najmaei S, Liu Z, Shi Y M, Kong J, Lou J, Ajayan P M, Yakobson B I, Idrobo J C. Intrinsic Structural Defects in Monolayer Molybdenum Disulfide[J]. Nano Lett., 2013,13(6):2615-2622. doi: 10.1021/nl4007479
Komsa H P, Krasheninnikov A V. Native Defects in Bulk And Monolayer MoS2 from First Principles[J]. Phys. Rev. B, 2015,91(12)125304. doi: 10.1103/PhysRevB.91.125304
Rhodes D, Chae S H, Ribeiro-Palau R, Hone J. Disorder in van der Waals Heterostructures of 2D Materials[J]. Nat. Mater., 2019,18(6):541-549. doi: 10.1038/s41563-019-0366-8
Komsa H P, Kurasch S, Lehtinen O, Kaiser U, Krasheninnikov A V. From Point to Extended Defects in Two-Dimensional MoS2: Evolution of Atomic Structure under Electron Irradiation[J]. Phys. Rev. B, 2013,88(3):3239-3246.
Schweiger H, Raybaud P, Kresse G, Toulhoat H. Shape and Edge Sites Modifications of MoS2 Catalytic Nanoparticles Induced by Working Conditions: A Theoretical Study[J]. J. Catal., 2002,207(1):76-87. doi: 10.1006/jcat.2002.3508
Feng S M, Tan J Y, Zhao S L, Zhang S Q, Khan U, Tang L, Zou X L, Lin J H, Cheng H M, Liu B L. Synthesis of Ultrahigh-Quality Monolayer Molybdenum Disulfide through In Situ Defect Healing with Thiol Molecules[J]. Small, 2020,16(35)2003357. doi: 10.1002/smll.202003357
Yang P, Shan Y B, Chen J, Ekoya G, Han J K, Qiu Z J, Sun J J, Chen F, Wang H M, Bao W Z, Hu L G, Zhang R J, Liu R, Cong C X. Remarkable Quality Improvement of As-Grown Monolayer MoS2 by Sulfur Vapor Pretreatment of SiO2/Si Substrates[J]. Nanoscale, 2020,12(3):1958-1966. doi: 10.1039/C9NR09129G
Chen Y F, Deng W J, Chen X Q, Wu Y, Shi J W, Zheng J Y, Chu F H, Liu B Y, An B X, You C Y, Jiao L Y, Liu X F, Zhang Y Z. Carrier Mobility Tuning of MoS2 by Strain Engineering in CVD Growth Process[J]. Nano Res., 2020,14(7):2314-2320.
An B X, Ma Y, Zhang G Q, You C Y, Zhang Y Z. Controlled Synthesis of Few-Layer SnSe2 by Chemical Vapor Deposition[J]. RSC Adv., 2020,10(69):42157-42163. doi: 10.1039/D0RA08360G
Zhang J M, Qian Y H, Nan H Y, Gu X F, Xiao S Q. Large-Scale MoS2(1-x)Se2x Monolayers Synthesized by Confined-Space CVD[J]. Nanotechnology, 2021,32(35)355601. doi: 10.1088/1361-6528/ac0026
Phan H D, Jung J, Kim Y, Huynh V N, Lee C. Large-Area Single-Crystal Graphene Grown on a Recrystallized Cu(111) Surface by Using a Hole-Pocket Method[J]. Nanoscale, 2016,8(28):13781-13789. doi: 10.1039/C6NR04416F
He Y M, Ma Y, Li X H, Zhang Y Z. All-Inorganic Perovskite Nanosheet Fabrication Under Synergistic Effect for Integrated Optoelectronics with Strong Light-Matter Interactions[J]. ACS Appl. Nano Mater., 2021,4(3):2634-2641. doi: 10.1021/acsanm.0c03269
Li J, Wang S, Jiang Q, Qian H J, Hu S K, Kang H, Chen C, Zhan X Y, Yu A B, Zhao S W, Zhang Y H, Chen Z Y, Sui Y P, Qiao S, Yu G H, Peng S G, Jin Z, Liu X Y. Single-Crystal MoS2 Monolayer Wafer Grown on Au(111) Film Substrates[J]. Small, 2021,17(30)2100743. doi: 10.1002/smll.202100743
Zhang X T, Zhang F, Wang Y X, Schulman D S, Zhang T Y, Bansal A, Alem N, Das S, Crespi V H, Terrones M, Redwing J M. Defect-Controlled Nucleation and Orientation of WSe2 on HBN: A Route to Single-Crystal Epitaxial Monolayers[J]. ACS Nano, 2019,13(3):3341-3352. doi: 10.1021/acsnano.8b09230
Li T T, Guo W, Ma L, Li W S, Yu Z H, Han Z, Gao S, Liu L, Fan D X, Wang Z X, Yang Y, Lin W Y, Luo Z Z, Chen X Q, Dai N X, Tu X C, Pan D F, Yao Y G, Wang P, Nie Y F, Wang J L, Shi Y, Wang X R. Epitaxial Growth of Wafer-Scale Molybdenum Disulfide Semiconductor Single Crystals on Sapphire[J]. Nat. Nanotechnol., 2021,12(11):1201-1207.
Yang P F, Zhang S Q, Pan S Y, Tang B, Liang Y, Zhao X X, Zhang Z P, Shi J P, Huan Y H, Shi Y P, Pennycook S J, Ren Z F, Zhang G H, Chen Q, Zou X L, Liu Z F, Zhang Y F. Epitaxial Growth of Centimeter-Scale Single-Crystal MoS2 Monolayer on Au(111)[J]. ACS Nano, 2020,14(4):5036-5045. doi: 10.1021/acsnano.0c01478
Fu D Y, Zhao X X, Zhang Y Y, Li L J, Xu H, Jang A R, Yoon S I, Song P, Poh S M, Ren T H, Ding Z J, Fu W, Shin T J, Shin H S, Pantelides S T, Zhou W, Loh K P. Molecular Beam Epitaxy of Highly Crystalline Monolayer Molybdenum Disulfide on Hexagonal Boron Nitride[J]. J. Am. Chem. Soc., 2017,139(27):9392-9400. doi: 10.1021/jacs.7b05131
Xu X L, Pan Y, Liu S, Han B, Gu P F, Li S H, Xu W J, Peng Y X, Han Z, Chen J, Gao P, Ye Y. Seeded 2D Epitaxy of Large-Area Single-Crystal Films of the van der Waals Semiconductor 2H MoTe2[J]. Science, 2021,372(6538):195-200. doi: 10.1126/science.abf5825
Qiu H, Xu T, Wang Z L, Ren W, Nan H Y, Ni Z H, Chen Q, Yuan S J, Miao F, Song F Q, Long G, Shi Y, Sun L T, Wang J L, Wang X R. Hopping Transport through Defect-Induced Localized States in Molybdenum Disulphide[J]. Nat. Commun., 2013,4(1)2642. doi: 10.1038/ncomms3642
Lehnert T, Lehtinen O, Algara-Siller G, Kaiser U. Electron Radiation Damage Mechanisms in 2D MoSe2[J]. Appl. Phys. Lett., 2017,110(3)033106. doi: 10.1063/1.4973809
Zan R, Ramasse Q M, Jalil R, Georgiou T, Bangert U, Novoselov K S. Control of Radiation Damage in MoS2 by Graphene Encapsulation[J]. ACS Nano, 2013,7(11):10167-10174. doi: 10.1021/nn4044035
Mitterreiter E, Schuler B, Cochrane K A, Wurstbauer U, Weber-Bargioni A, Kastl C, Holleitner A W. Atomistic Positioning of Defects in Helium Ion Treated Single-Layer MoS2[J]. Nano Lett., 2020,20(6):4437-4444. doi: 10.1021/acs.nanolett.0c01222
Zhao Q H, Frisenda R, Gant P, De Lara D P, Munuera C, Garcia-Hernandez M, Niu Y, Wang T, Jie W Q, Castellanos-Gomez A. Toward Air Stability of Thin Gase Devices: Avoiding Environmental and Laser-Induced Degradation by Encapsulation[J]. Adv. Funct. Mater., 2018,28(47)1805304. doi: 10.1002/adfm.201805304
Gao J, Li B C, Tan J W, Chow P, Lu T M, Koratkar N. Aging of Transition Metal Dichalcogenide Monolayers[J]. ACS Nano, 2016,10(2):2628-2635. doi: 10.1021/acsnano.5b07677
Mahyavanshi R D, Kalita G, Singh R, Kondo M, Dewa T, Kawahara T, Umeno M, Tanemura M. Encapsulation of Transition Metal Dichalcogenides Crystals with Room Temperature Plasma Deposited Carbonaceous Films[J]. RSC Adv., 2017,7(65):41136-41143. doi: 10.1039/C7RA06816F
Pace S, Martini L, Convertino D, Keum D H, Forti S, Pezzini S, Fabbri F, Miseikis V, Coletti C. Synthesis of Large-Scale Monolayer 1T'-MoTe2 and Its Stabilization via Scalable hBN Encapsulation[J]. ACS Nano, 2021,15(3):4213-4225. doi: 10.1021/acsnano.0c05936
Kim C K, Jeong E G, Kim E, Song J G, Kim Y, Woo W J, Lee M K, Bae H, Jeon S B, Kim H, Choi K C, Choi Y K. Highly Stable 2D Material (2DM) Field-Effect Transistors (Fets) with Wafer-Scale Multidyad Encapsulation[J]. Nanotechnology, 2017,28(5)055203. doi: 10.1088/1361-6528/aa5235
Canton-Vitoria R, Sayed-Ahmad-Baraza Y, Humbert B, Arenal R, Ewels C P, Tagmatarchis N. Pyrene Coating Transition Metal Disulfides as Protection from Photooxidation and Environmental Aging[J]. Nanomaterials, 2020,10(2)363. doi: 10.3390/nano10020363
Budania P, Baine P, Montgomery J, Mcgeough C, Cafolla T, Modreanu M, Mcneill D, Mitchell N, Hughes G, Hurley P. Long-Term Stability of Mechanically Exfoliated MoS2 Flakes[J]. MRS Commun., 2017,7(4):813-818. doi: 10.1557/mrc.2017.105
Yao K, Banerjee D, Femi-Oyetoro J D, Hathaway E, Jiang Y, Squires B, Jones D C, Neogi A, Cui J B, Philipose U, Agarwal A, Lu E, Yao S, Khare M, Ojo I A, Marshall G, Perez J. Growth of Monolayer MoS2 on Hydrophobic Substrates as a Novel and Feasible Method to Prevent the Ambient Degradation of Monolayer MoS2[J]. MRS Adv., 2020,5(52):2707-2715.
Foörster A, Gemming S, Seifert G, Tomanek D. Chemical and Electronic Repair Mechanism of Defects in MoS2 Monolayers[J]. ACS Nano, 2017,11(10):9989-9996. doi: 10.1021/acsnano.7b04162
Roy S, Choi W, Jeon S, Kim D H, Kim H, Yun S J, Lee Y, Lee J, Kim Y M, Kim J. Atomic Observation of Filling Vacancies in Monolayer Transition Metal Sulfides by Chemically Sourced Sulfur Atoms[J]. Nano Lett., 2018,18(7):4523-4530. doi: 10.1021/acs.nanolett.8b01714
Makarova M, Okawa Y, Aono M. Selective Adsorption of Thiol Molecules at Sulfur Vacancies on MoS2 (0001), Followed by Vacancy Repair via S-C Dissociation[J]. J. Phys. Chem. C, 2012,116(42):22411-22416. doi: 10.1021/jp307267h
Li Q, Zhao Y H, Ling C Y, Yuan S J, Chen Q, Wang J L. Towards a Comprehensive Understanding of the Reaction Mechanisms between Defective MoS2 and Thiol Molecules[J]. Angew. Chem. Int. Ed., 2017,56(35):10501-10505. doi: 10.1002/anie.201706038
Zhang X K, Liao Q L, Liu S, Kang Z, Zhang Z, Du J L, Li F, Zhang S H, Xiao J K, Liu B S, Ou Y, Liu X Z, Gu L, Zhang Y. Poly(4-styrene-sulfonate)-Induced Sulfur Vacancy Self-Healing Strategy for Monolayer MoS2 Homojunction Photodiode[J]. Nat. Commun., 2017,8(1)15881. doi: 10.1038/ncomms15881
Mahjouri-Samani M, Liang L B, Oyedele A, Kim Y S, Tian M K, Cross N, Wang K, Lin M W, Boulesbaa A, Rouleau C M, Puretzky A A, Xiao K, Yoon M, Eres G, Duscher G, Sumpter B G, Geohegan D B. Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe2-x Crystals[J]. Nano Lett., 2016,16(8):5213-5220. doi: 10.1021/acs.nanolett.6b02263
Peto J, Ollar T, Vancso P, Popov Z I, Magda G Z, Dobrik G, Hwang C, Sorokin P B, Tapaszto L. Spontaneous Doping of the Basal Plane of MoS2 Single Layers through Oxygen Substitution under Ambient Conditions[J]. Nat. Chem., 2018,10(12):1246-1251. doi: 10.1038/s41557-018-0136-2
Leong W S, Li Y D, Luo X, Nai C T, Quek S Y, Thong J T. Tuning the Threshold Voltage of MoS2 Field-Effect Transistors via Surface Treatment[J]. Nanoscale, 2015,7(24):10823-10831. doi: 10.1039/C5NR00253B
Hu S K, Li J, Wang S, Liang Y J, Kang H, Zhang Y H, Chen Z Y, Sui Y P, Yu G H, Peng S G, Jin Z, Liu X Y. Detecting the Repair of Sulfur Vacancies in CVD-Grown MoS2 Domains via Hydrogen Etching[J]. J. Electron. Mater., 2020,49(4):2547-2555. doi: 10.1007/s11664-020-07957-7
Yanase T, Uehara F, Naito I, Nagahama T, Shimada T. Healing Sulfur Vacancies in Monolayer MoS2 by High-Pressure Sulfur and Selenium Annealing: Implication for High-Performance Transistors[J]. ACS Appl. Nano Mater., 2020,3(10):10462-10469. doi: 10.1021/acsanm.0c02385
Xu X L, Han B, Liu S, Yang S Q, Jia X H, Xu W J, Gao P, Ye Y, Dai L. Atomic-Precision Repair of a Few-Layer 2H-MoTe2 Thin Film by Phase Transition and Recrystallization Induced by a Heterophase Interface[J]. Adv. Mater., 2020,32(23)2000236. doi: 10.1002/adma.202000236
Zhang K H, Feng S M, Wang J J, Azcatl A, Lu N, Addou R, Wang N, Zhou C J, Lerach J, Bojan V, Kim M J, Chen L Q, Wallace R M, Terrones M, Zhu J, Robinson J A. Manganese Doping of Monolayer MoS2: The Substrate is Critical[J]. Nano Lett., 2015,15(10):6586-6591. doi: 10.1021/acs.nanolett.5b02315
Hayashi Y. Pot Economy and One-Pot Synthesis[J]. Chem. Sci., 2016,7(2):866-880. doi: 10.1039/C5SC02913A
Wang B, Xia Y P, Zhang J Q, Komsa H P, Xie M H, Peng Y, Jin C H. Niobium Doping Induced Mirror Twin Boundaries in MBE Grown WSe2 Monolayers[J]. Nano Res., 2020,13(7):1889-1896. doi: 10.1007/s12274-020-2639-6
Mouri S, Miyauchi Y, Matsuda K. Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping[J]. Nano Lett., 2013,13(12):5944-5948. doi: 10.1021/nl403036h
Qin S, Lei W W, Liu D, Chen Y. In-Situ and Tunable Nitrogen-Doping of MoS2 Nanosheets[J]. Sci. Rep., 2014,4(1)7582.
Tang B H, Yu Z G, Huang L, Chai J W, Wong S L, Deng J, Yang W F, Gong H, Wang S J, Ang K W, Zhang Y W, Chi D Z. Direct n-to p-Type Channel Conversion in Monolayer/Few-Layer WS2 Field-Effect Transistors by Atomic Nitrogen Treatment[J]. ACS Nano, 2018,12(3):2506-2513. doi: 10.1021/acsnano.7b08261
Lin Y C, Dumcenco D O, Komsa H P, Niimi Y, Krasheninnikov A V, Huang Y S, Suenaga K. Properties of Individual Dopant Atoms in Single-Layer MoS2: Atomic Structure, Migration, and Enhanced Reactivity[J]. Adv. Mater., 2014,26(18):2857-2861. doi: 10.1002/adma.201304985
Wang S Y, Ko T S, Huang C C, Lin D Y, Huang Y S. Optical and Electrical Properties of MoS2 and Fe-Doped MoS2[J]. Jpn. J. Appl. Phys., 2014,53(4S)04E.
Zou J Y, Cai Z Y, Lai Y J, Tan J Y, Zhang R J, Feng S M, Wang G, Lin J H, Liu B L, Cheng H M. Doping Concentration Modulation in Vanadium-Doped Monolayer Molybdenum Disulfide for Synaptic Transistors[J]. ACS Nano, 2021,15(4):7340-7347. doi: 10.1021/acsnano.1c00596
Li S Y, Chen X Q, Liu F M, Chen Y F, Liu B Y, Deng W J, An B X, Chu F H, Zhang G Q, Li S L, Li X H, Zhang Y Z. Enhanced Performance of a CVD MoS2 Photodetector by Chemical In Situ N-Type Doping[J]. ACS Appl. Mater. Interfaces, 2019,11(12):11636-11644. doi: 10.1021/acsami.9b00856
An B X, Ma Y, Chu F H, Li X H, Wu Y, You C Y, Deng W J, Li S Y, Zhang Y Z. Growth of Centimeter Scale Nb1-xWxSe2 Monolayer Film by Promoter Assisted Liquid Phase Chemical Vapor Deposition[J]. Nano Res., 2021,15(3):2608-2615.
Zhang J, Zhu Y, Tebyetekerwa M, Li D L, Liu D, Lei W W, Wang L F, Zhang Y P, Lu Y R. Vanadium-Doped Monolayer MoS2 with Tunable Optical Properties for Field-Effect Transistors[J]. ACS Appl. Nano Mater., 2020,4(1):769-777.
Cai Z Y, Shen T Z, Zhu Q, Feng S M, Yu Q M, Liu J M, Tang L, Zhao Y, Wang J W, Liu B L, Cheng H M. Dual-Additive Assisted Chemical Vapor Deposition for the Growth of Mn-Doped 2D MoS2 with Tunable Electronic Properties[J]. Small, 2020,16(15)1903181. doi: 10.1002/smll.201903181
Tang L, Xu R Z, Tan J Y, Luo Y T, Zou J Y, Zhang Z T, Zhang R J, Zhao Y, Lin J H, Zou X L, Liu B L, Cheng H M. Modulating Electronic Structure of Monolayer Transition Metal Dichalcogenides by Substitutional Nb-Doping[J]. Adv. Funct. Mater., 2020,31(5)2006941.
Qin Z Y, Loh L, Wang J Y, Xu X M, Zhang Q, Haas B, Alvarez C, Okuno H, Yong J Z, Schultz T, Koch N, Dan J D, Pennycook S J, Zeng D, Bosman M, Eda G. Growth of Nb-Doped Monolayer WS2 by Liquid-Phase Precursor Mixing[J]. ACS Nano, 2019,13(9):10768-10775. doi: 10.1021/acsnano.9b05574
Loh L, Chen Y F, Wang J Y, Yin X M, Tang C S, Zhang Q, Watanabe K, Taniguchi T, Wee A T, Bosman M, Quek S Y, Eda G. Impurity-Induced Emission in Re-Doped WS2 Monolayers[J]. Nano Lett., 2021,21(12):5293-5300. doi: 10.1021/acs.nanolett.1c01439
Kozhakhmetov A, Schuler B, Tan A M Z, Cochrane K A, Nasr J R, El-Sherif H, Bansal A, Vera A, Bojan V, Redwing J M, Bassim N, Das S, Hennig R G, Weber-Bargioni A, Robinson J A. Scalable Substitutional Re-Doping and Its Impact on the Optical and Electronic Properties of Tungsten Diselenide[J]. Adv. Mater., 2020,32(50)2005159. doi: 10.1002/adma.202005159
Ogura H, Kaneda M, Nakanishi Y, Nonoguchi Y, Pu J, Ohfuchi M, Irisawa T, Lim H E, Endo T, Yanagi K, Takenobu T, Miyata Y. Air-Stable, Efficient Electron Doping of Monolayer MoS2 by Salt-Crown Ether Treatment[J]. Nanoscale, 2021,13(19):8784-8789. doi: 10.1039/D1NR01279G
Chee S S, Oh C, Son M, Son G C, Jang H, Yoo T J, Lee S, Lee W, Hwang J Y, Choi H, Lee B H, Ham M H. Sulfur Vacancy-Induced Reversible Doping of Transition Metal Disulfides via Hydrazine Treatment[J]. Nanoscale, 2017,9(27):9333-9339. doi: 10.1039/C7NR01883E
Iqbal M W, Elahi E, Amin A, Aftab S, Aslam I, Hussain G, Shehzad M A. A Facile Route to Enhance the Mobility of MoTe2 Field Effect Transistor via Chemical Doping[J]. Superlattices Microstruct., 2020,147106698. doi: 10.1016/j.spmi.2020.106698
Ji H G, Solis-Fernandez P, Yoshimura D, Maruyama M, Endo T, Miyata Y, Okada S, Ago H. Chemically Tuned p-and n-Type WSe2 Monolayers with High Carrier Mobility for Advanced Electronics[J]. Adv. Mater., 2019,31(42)1903613. doi: 10.1002/adma.201903613
Yang L M, Majumdar K, Liu H, Du Y C, Wu H, Hatzistergos M, Hung P Y, Tieckelmann R, Tsai W, Hobbs C, Ye P D. Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS2[J]. Nano Lett., 2014,14(11):6275-6280. doi: 10.1021/nl502603d
Jiang J F, Zhang Q H, Wang A Z, Zhang Y, Meng F Q, Zhang C C, Feng X J, Feng Y P, Gu L, Liu H, Han L. A Facile and Effective Method for Patching Sulfur Vacancies of WS2 via Nitrogen Plasma Treatment[J]. Small, 2019,15(36)1901791. doi: 10.1002/smll.201901791
Jin W, Zeng X B, Guo Z Y, Zeng Y, Wang W Z, Zeng Y R, Hu Y S, Xiao Y H, Lu J C, Lu J J, Wang J H. Optoelectronic Properties of Lateral MoS2 p-n Homojunction Implemented by Selective p-Type Doping Using Nitrogen Plasma[J]. J. Phys. D: Appl. Phys., 2020,53(40)405102. doi: 10.1088/1361-6463/ab985d
Liu M X, Shi J P, Li Y C, Zhou X B, Ma D L, Qi Y, Zhang Y F, Liu Z F. Temperature-Triggered Sulfur Vacancy Evolution in Monolayer MoS2/Graphene Heterostructures[J]. Small, 2017,13(40)1602967. doi: 10.1002/smll.201602967
Mendes R G, Pang J B, Bachmatiuk A, Ta H Q, Zhao L, Gemming T, Fu L, Liu Z F, Rummeli M H. Electron-Driven In Situ Transmission Electron Microscopy of 2D Transition Metal Dichalcogenides and Their 2D Heterostructures[J]. ACS Nano, 2019,13(2):978-995.
Schuler B, Qiu D Y, Refaely-Abramson S, Kastl C, Chen C T, Barja S, Koch R J, Ogletree D F, Aloni S, Schwartzberg A M, Neaton J B, Louie S G, Weber-Bargioni A. Large Spin-Orbit Splitting of Deep In-Gap Defect States of Engineered Sulfur Vacancies in Monolayer WS 2[J]. Phys. Rev. Lett., 2019,123(7)076801. doi: 10.1103/PhysRevLett.123.076801
Chua R, Yang J, He X Y, Yu X J, Yu W, Bussolotti F, Wong P K J, Loh K P, Breese M B H, Goh K E J, Huang Y L, Wee A T S. Can Reconstructed Se-Deficient Line Defects in Monolayer VSe2 Induce Magnetism? Adv[J]. Mater., 2020,32(24)2000693.
Huang B J, Tian F, Shen Y D, Zheng M R, Zhao Y S, Wu J, Liu Y, Pennycook S J, Thong J T L. Selective Engineering of Chalcogen Defects in MoS2 by Low-Energy Helium Plasma[J]. ACS Appl. Mater. Interfaces, 2019,11(27):24404-24411. doi: 10.1021/acsami.9b05507
Leiter R, Li Y L, Kaiser U. In-Situ Formation and Evolution of Atomic Defects in Monolayer WSe2 under Electron Irradiation[J]. Nanotechnology, 2020,31(49)495704. doi: 10.1088/1361-6528/abb335
Wang S S, Lee G D, Lee S, Yoon E, Warner J H. Detailed Atomic Reconstruction of Extended Line Defects in Monolayer MoS2[J]. ACS Nano, 2016,10(5):5419-5430. doi: 10.1021/acsnano.6b01673
Egerton R F, Li P, Malac M. Radiation Damage in the TEM and SEM[J]. Micron, 2004,35(6):399-409. doi: 10.1016/j.micron.2004.02.003
Fujisawa K, Carvalho B R, Zhang T Y, Perea-Lopez N, Lin Z, Carozo V, Ramos S L L M, Kahn E, Bolotsky A, Liu H, Elias A L, Terrones M. Quantification and Healing Of Defects in Atomically Thin Molybdenum Disulfide: Beyond the Controlled Creation of Atomic Defects[J]. ACS Nano, 2021,15(6):9658-9669. doi: 10.1021/acsnano.0c10897
Shim J, Oh A, Kang D H, Oh S, Jang S K, Jeon J, Jeon M H, Kim M, Choi C, Lee J, Lee S, Yeom G Y, Song Y J, Park J H. High-Performance 2D Rhenium Disulfide (ReS2) Transistors and Photodetectors by Oxygen Plasma Treatment[J]. Adv. Mater., 2016,28(32):6985-6992. doi: 10.1002/adma.201601002
Wu Z T, Zhao W W, Jiang J, Zheng T, You Y M, Lu J P, Ni Z H. Defect Activated Photoluminescence in WSe2 Monolayer[J]. J. Phys. Chem. C, 2017,121(22):12294-12299. doi: 10.1021/acs.jpcc.7b03585
Chee S S, Lee W J, Jo Y R, Cho M K, Chun D, Baik H, Kim B J, Yoon M H, Lee K, Ham M H. Atomic Vacancy Control and Elemental Substitution in a Monolayer Molybdenum Disulfide for High Performance Optoelectronic Device Arrays[J]. Adv. Funct. Mater., 2020,30(11)1908147. doi: 10.1002/adfm.201908147
Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H. Phase Patterning for Ohmic Homojunction Contact in MoTe2[J]. Science, 2015,349(6248):625-628. doi: 10.1126/science.aab3175
Allen L C. Electronegativity is the Average One-Electron Energy of the Valence-Shell Electrons in Ground-State Free Atoms[J]. J. Am. Chem. Soc., 1989,111(25):9003-9014. doi: 10.1021/ja00207a003
Gao L, Liao Q L, Zhang X K, Liu X Z, Gu L, Liu B S, Du J L, Ou Y, Xiao J K, Kang Z, Zhang Z, Zhang Y. Defect-Engineered Atomically Thin MoS2 Homogeneous Electronics for Logic Inverters[J]. Adv. Mater., 2020,32(2)1906646. doi: 10.1002/adma.201906646
Zhang X K, Liao Q L, Kang Z, Liu B S, Liu X Z, Ou Y, Xiao J K, Du J L, Liu Y H, Gao L, Gu L, Hong M Y, Yu H H, Zhang Z, Duan X F, Zhang Y. Hidden Vacancy Benefit in Monolayer 2D Semiconductors[J]. Adv. Mater., 2021,33(7)2007051. doi: 10.1002/adma.202007051
He Y M, Tang P Y, Hu Z L, He Q Y, Zhu C, Wang L Q, Zeng Q S, Golani P, Gao G H, Fu W, Huang Z Q, Gao C T, Xia J, Wang X L, Wang X W, Zhu C, Ramasse Q M, Zhang A, An B X, Zhang Y Z, Marti-Sanchez S, Morante J R, Wang L, Tay B K, Yakobson B I, Trampert A, Zhang H, Wu M H, Wang Q J, Arbiol J, Liu Z. Engineering Grain Boundaries at the 2D Limit for the Hydrogen Evolution Reaction[J]. Nat. Commun., 2020,11(1)57. doi: 10.1038/s41467-019-13631-2
Liu L X, Ye K, Lin C Q, Jia Z Y, Xue T Y, Nie A M, Cheng Y C, Xiang J Y, Mu C P, Wang B C, Wen F S, Zhai K, Zhao Z S, Gong Y J, Liu Z Y, Tian Y J. Grain-Boundary-Rich Polycrystalline Monolayer WS2 Film for Attomolar-Level Hg2+ Sensors[J]. Nat. Commun., 2021,12(1)3870. doi: 10.1038/s41467-021-24254-x
Zhao X X, Fu D Y, Ding Z J, Zhang Y Y, Wan D Y, Tan S J R, Chen Z X, Leng K, Dan J D, Fu W, Geng D C, Song P, Du Y H, Venkatesan T, Pantelides S T, Pennycook S J, Zhou W, Loh K P. Mo-Terminated Edge Reconstructions in Nanoporous Molybdenum Disulfide Film[J]. Nano Lett., 2018,18(1):482-490. doi: 10.1021/acs.nanolett.7b04426
Liu L X, Ye K, Zhan Q, Xue T Y, Zhai K, Cheng Y C, Jia Z Y, Nie A, Xiang J Y, Mu C P, Wang B C, Wen F S, Zhao Z S, Gong Y J, Tian Y J, Liu Z Y. Ultrasensitive Biochemical Sensors Based on Controllably Grown Films of High-Density Edge-Rich Multilayer WS 2 Islands[J]. Sens. Actuators B: Chem., 2022,353131081. doi: 10.1016/j.snb.2021.131081
Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Synthesis of MoS2 and MoSe2 Films with Vertically Aligned Layers[J]. Nano Lett., 2013,13(3):1341-1347. doi: 10.1021/nl400258t
Huang L B, Zhao L, Zhang Y, Chen Y Y, Zhang Q H, Luo H, Zhang X, Tang T, Gu L, Hu J S. Self-Limited on-Site Conversion of MoO3 Nanodots into Vertically Aligned Ultrasmall Monolayer MoS2 for Efficient Hydrogen Evolution[J]. Adv. Energy Mater., 2018,8(21)1800734. doi: 10.1002/aenm.201800734
Schmidt H, Wang S F, Chu L Q, Toh M L, Kumar R, Zhao W J, Castro Neto A H, Martin J, Adam S, Özyilmaz B, Eda G. Transport Properties of Monolayer MoS2 Grown by Chemical Vapor Deposition[J]. Nano Lett., 2014,14(4):1909-1913. doi: 10.1021/nl4046922
Jadwiszczak J, O'callaghan C, Zhou Y B, Fox D S, Weitz E, Keane D, Cullen C P, O'reilly I, Downing C, Shmeliov A, Maguire P, Gough J J, Mcguinness C, Ferreira M S, Bradley A L, Boland J J, Duesberg G S, Nicolosi V, Zhang H Z. Oxide-Mediated Recovery of Field-Effect Mobility in Plasma-Treated MoS2[J]. Sci. Adv., 2018,4(3)eaao5031. doi: 10.1126/sciadv.aao5031
Li Z, Liu L, Xu J P. Largely Enhanced Mobility of MoS2 Field-Effect Transistors by Optimizing O2-Plasma Treatment on MoS2[J]. IEEE Trans. Electron Devices, 2021,68(9):4614-4617. doi: 10.1109/TED.2021.3089562
Choudhary N, Islam M R, Kang N, Tetard L, Jung Y, Khondaker S I. Two-Dimensional Lateral Heterojunction through Bandgap Engineering of MoS2 via Oxygen Plasma[J]. J. Phys. Condens. Matter, 2016,28(36)364002. doi: 10.1088/0953-8984/28/36/364002
Nan H Y, Wang Z L, Wang W H, Liang Z, Lu Y, Chen Q, He D W, Tan P H, Miao F, Wang X R, Wang J L, Ni Z H. Strong Photoluminescence Enhancement of MoS2 through Defect Engineering and Oxygen Bonding[J]. ACS Nano, 2014,8(6):5738-5745. doi: 10.1021/nn500532f
Wang W F, Shu H B, Wang J, Cheng Y C, Liang P, Chen X S. Defect Passivation and Photoluminescence Enhancement of Monolayer MoS2 Crystals through Sodium Halide-Assisted Chemical Vapor Deposition Growth[J]. ACS Appl. Mater. Interfaces, 2020,12(8):9563-9571. doi: 10.1021/acsami.9b19224
Qian Q K, Peng L T, Perea-Lopez N, Fujisawa K, Zhang K Y, Zhang X T, Choudhury T H, Redwing J M, Terrones M, Ma X D, Huang S X. Defect Creation in WSe2 with a Microsecond Photoluminescence Lifetime by Focused Ion Beam Irradiation[J]. Nanoscale, 2020,12(3):2047-2056. doi: 10.1039/C9NR08390A
He Y M, Clark G, Schaibley J R, He Y, Chen M C, Wei Y J, Ding X, Zhang Q, Yao W, Xu X D, Lu C Y, Pan J W. Single Quantum Emitters in Monolayer Semiconductors[J]. Nat. Nanotechnol., 2015,10(6):497-502. doi: 10.1038/nnano.2015.75
Avsar A, Ciarrocchi A, Pizzochero M, Unuchek D, Yazyev O V, Kis A. Defect Induced, Layer-Modulated Magnetism in Ultrathin Metallic PtSe2[J]. Nat. Nanotechnol., 2019,14(7):674-678. doi: 10.1038/s41565-019-0467-1
Lin X Q, Ni J. Charge and Magnetic States of Mn-, Fe-, and Co-Doped Monolayer MoS2[J]. J. Appl. Phys., 2014,116(4)044311. doi: 10.1063/1.4891495
Muhammad Z, Ali M W, Mir I A, Khan Q U, Zhu L. Copper-Doped Induced Ferromagnetic Half-Metal Zirconium Diselenide Single Crystals[J]. Nanotechnology, 2020,31(23)235704. doi: 10.1088/1361-6528/ab72b3
WU W M, ZHANG C S, HOU S G, YANG S B. Synthesis of Mxenes and Mxenes-Containing Composites for Energy Storage and Conversions[J]. Chinese Journal of Applied Chemistry, 2018,35(3):317-327.
WANG H, ZHANG X D, XIE Y. Recent Progresses on the Photoexcitation Processes of Polymeric Carbon Nitride-Based Materials[J]. Chinese J. Inorg. Chem., 2017,33(11):1897-1913. doi: 10.11862/CJIC.2017.249
He F, Liu Y J, Cai Q H, Zhao J X. Size-Dependent Electrocatalytic Activity of ORR/OER on Palladium Nanoclusters Anchored on Defective MoS2 Monolayers[J]. New J. Chem., 2020,44(37):16135-16143. doi: 10.1039/D0NJ03645E
Liu X J, Yang H, He J, Liu H X, Song L D, Li L, Luo J. Highly Active, Durable Ultrathin MoTe2 Layers for the Electroreduction of CO 2 to CH4[J]. Small, 2018,14(16)1704049. doi: 10.1002/smll.201704049
Gao C, Rao D W, Yang H, Yang S K, Ye J J, Yang S S, Zhang C N, Zhou X C, Jing T Y, Yan X H. Dual Transition-Metal Atoms Doping: An Effective Route to Promote the ORR and OER Activity on MoTe2[J]. New J. Chem., 2021,45(12):5589-5595. doi: 10.1039/D0NJ05606E
Xu J Q, Li X D, Liu W, Sun Y F, Ju Z Y, Yao T, Wang C M, Ju H X, Zhu J F, Wei S Q, Xie Y. Carbon Dioxide Electroreduction into Syngas Boosted by a Partially Delocalized Charge in Molybdenum Sulfide Selenide Alloy Monolayers[J]. Angew. Chem. Int. Ed., 2017,56(31):9121-9125. doi: 10.1002/anie.201704928
Yanhui XUE , Shaofei CHAO , Man XU , Qiong WU , Fufa WU , Sufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183
Ning DING , Siyu WANG , Shihua YU , Pengcheng XU , Dandan HAN , Dexin SHI , Chao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Jianyu Qin , Yuejiao An , Yanfeng Zhang . In Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Jiarui Wu , Gengxin Wu , Yan Wang , Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Yihao Zhao , Jitian Rao , Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050
Fan JIA , Wenbao XU , Fangbin LIU , Haihua ZHANG , Hongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Aidang Lu , Yunting Liu , Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
Shuyong Zhang , Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078
X represents the chalcogen element, M represents the transition metal element