Citation: Wen-Jie JI, Cheng-Cai XIA, Xin-Yu ZHANG, Xin-Yi WANG. Anionic Modification of the Cu-Tb Single-Molecule Magnets Based on the Compartmental Schiff-Base Ligand[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1199-1208. doi: 10.11862/CJIC.2022.117 shu

Anionic Modification of the Cu-Tb Single-Molecule Magnets Based on the Compartmental Schiff-Base Ligand

  • Corresponding author: Xin-Yi WANG, wangxy66@nju.edu.cn
  • Received Date: 13 April 2022
    Revised Date: 2 May 2022

Figures(7)

  • By using different anions, three Cu-Tb metal complexes, namely [Cu2(vanophen)2TbCl2(MeOH)2]Cl· 3MeOH (1), [Cu2(vanophen)2TbCl2(MeOH)2](TCNQ)1.5·2MeOH (2), and [Cu2(vanophen)2Tb2(N3)6]·2MeOH (3), based on the compartmental Schiff-base ligand H2vanophen (H2vanophen=N, N′-bis(2-oxy-3-methoxybenzylidene)-1, 2-phenylenediamine, TCNQ=7, 7, 8, 8-tetracyanoquinodimethane) have been synthesized and characterized structurally and magnetically. Except for the different charge-balancing anions, complexes 1 and 2 have a very similar trinuclear [CuTbCu] structure, where the Cu(Ⅱ) ions are in the [N2O4] coordination pockets of the ligands, while the Tb(Ⅲ) ion is coordinated by all or some of the oxygen atoms from the [O4] pocket of the ligands. The charge-balancing anion is a Cl- ion in 1, while the positive charge is balanced by one TCNQ-0.5 radical and a half of the TCNQ- radical in 2. As for complex 3, it has a tetranuclear [CuTb]2 structure, where two [CuTb] units are bridged by end-end and end-on azides. Magnetic studies revealed that both 1 and 2 are field-induced SMMs while 3 is a zero-field SMM. The energy barriers of 1 and 3 were estimated to be (11.1±0.3) cm-1 and (20.2±0.3) cm-1, respectively. As for complex 2, its energy barrier was lower than that of 1, which might be due to the weak magnetic interaction between the [CuTbCu] unit and the paramagnetic radical anions.
  • 加载中
    1. [1]

      (a) Andoni Z L, Jose M S, Enrique C. Single-Molecule Magnets: From Mn12-ac to Dysprosium Metallocenes, a Travel in Time. Coord. Chem. Rev., 2021, 441: 3984-4020
      (b)Shao D, Wang X Y. Development of Single-Molecule Magnets. Chin. J. Chem., 2020, 38: 1005-1018

    2. [2]

      Zhu Z, Guo M, Li X L, Tang J. Molecular Magnetism of Lanthanide: Advances and Perspectives[J]. Coord. Chem. Rev., 2019,378:350-364. doi: 10.1016/j.ccr.2017.10.030

    3. [3]

      Ding X L, Zhai Y Q, Han T, Chen W P, Ding Y S, Zheng Y Z. A Local D4h Symetric Dysprosiun(Ⅲ) Single-Molecule Magnet with an Energy Barrier Exceeding 2 000 K[J]. Chem. Eur. J., 2021,27:2623-2627. doi: 10.1002/chem.202003931

    4. [4]

      Guo F S, Day B M, Chen Y C, Tong M L, Mansikkamäki A, Layfield R A. Magnetic Hysteresis up to 80 Kelvin in a Dysprosium Metallocene Single Molecule Magnet[J]. Science, 2018,362:1400-1403. doi: 10.1126/science.aav0652

    5. [5]

      Goodwin C A P, Ortu F, Reta D, Chilton N F, Mills D P. Molecular Magnetic Hysteresis at 60 Kelvin in Dysprosocenium[J]. Nature, 2017,548:439-442. doi: 10.1038/nature23447

    6. [6]

      Alejandro C A, Yolimar G, Leonel L, Daniel A. High Performance Single-Molecule Magnets, Orbach or Raman Relaxation Suppression?[J]. InorgChem. Front., 2020,7:2478-2486.

    7. [7]

      Chen Y C, Liu J L, Ungur L, Li Q W, Wang L F, Ni Z P, Chibotaru L F, Chen X P, Tong M L. Symmetry-Supported Magnetic Blocking at 20 K in Pentagonal Bipyramidal Dy(Ⅲ) Single-Ion Magnets[J]. J. Am. Chem. Soc., 2016,138(8):2829-2837. doi: 10.1021/jacs.5b13584

    8. [8]

      Ungur L, Chibotaru L F. Magnetic Anisotropy in the Excited States of Low Symmetry Lanthanide Complexes[J]. Phys. Chem. Chem. Phys., 2011,13:20086-20090. doi: 10.1039/c1cp22689d

    9. [9]

      Gould C A, Mcclain K R, Reta D, Kragskow J G C, Marchiori D A, Lachman E, Choi E S, Analytis J G, Britt R D, Chilton N F, Harvey B G, Long J R. Ultrahard Magnetism from Mixed-Valence Dilanthanide Complexes with Metal-Metal Bonding[J]. Science, 2022,375:198-202. doi: 10.1126/science.abl5470

    10. [10]

      Jiang S D, Wang B W, Su G, Wang Z M, Gao S. A Mononuclear Dys- prosium Complex Featuring Single-Molecule Magnet Behavior[J]. Angew. Chem. Int. Ed., 2010,49:7448-7451. doi: 10.1002/anie.201004027

    11. [11]

      Demir S, Gonzalez M I, Darago L E, Evans W J, Long J R. Giant Coercivity and High Magnetic Blocking Temperatures for N23-Radical-Bridged Dilanthanide Complexes upon Ligand Dissociation[J]. Nat. Commun., 2017,82144. doi: 10.1038/s41467-017-01553-w

    12. [12]

      Dolinar B S, Alexandropoulos D I, Vignesh K R, James T A, Dunbar K R. Lanthanide Triangles Supported by Radical Bridging Ligands[J]. J. Am. Chem. Soc., 2018,140(3):908-911. doi: 10.1021/jacs.7b12495

    13. [13]

      Peng Y, Powell A K. What do 3d-4f Butterflies Tell Us?[J]. CoordChem. Rev., 2021,426214390.

    14. [14]

      Yang J W, Tian Y M, Tao J, Chen P, Li H F, Zhang Y Q, Yan P F, Sun W B. Modulation of the Coordination Environment around the Magnetic Easy Axis Leads to Significant Magnetic Relaxations in a Series of 3d-4f Schiff Complexes[J]. Inorg. Chem., 2018,57:8065-8077. doi: 10.1021/acs.inorgchem.8b00056

    15. [15]

      Wen H R, Hu J H, Yang K, Zhang J L, Liu S J, Liao J S, Liu C M. Family of Chiral Zn-Ln (Ln=Dy and Tb) Heterometallic Complexes Derived from the Amine-Phenol Ligand Showing Multifunctional Properties[J]. Inorg. Chem., 2020,59:2811-2824. doi: 10.1021/acs.inorgchem.9b03164

    16. [16]

      Souvik M, Apran M, Sanjit K, Ashutosh G. The Role of 3d-4f Exchange Interaction in SMM Behavior and Magnetic Refrigeration of Carbonato Bridged Cu2 Ln2 (Ln=Dy, Tb, Gd) Complexes of an Unsymmetrical N2O4 Donor Ligand[J]. Dalton Trans., 2019,48:15170-15183. doi: 10.1039/C9DT02627D

    17. [17]

      Vignesh K R, Langly S K, Murray K S, Rajarman G. Quenching the Quantum Tunneling of Magnetization in Heterometallic Octanuclear TM4Dy4 (TM=Co and Cr) Single-Molecular Magnets by Modification of the Bridging Ligands and Enhancing the Magnetic Exchange Coupling[J]. Chem. Eur. J., 2017,23:1654-1666. doi: 10.1002/chem.201604835

    18. [18]

      Osa S, Kido T, Matsumoto N, Re N, Pochaba A, Mrozinski J. A Tetranuclear 3d-4f Single Molecule Magnet: [CuLTb (hfac)2]2[J]. J. Am. Chem. Soc., 2004,126:420-421. doi: 10.1021/ja037365e

    19. [19]

      Liu C M, Zhang D Q, Hao X, Zhu D B. Assembly of Chiral 3d-4f Wheel-like Cluster Complexes with Achiral Ligands: Single-Molecule Magnetic Behavior and Magnetocaloric Effect[J]. Inorg. Chem. Front., 2020,7:3340-3351. doi: 10.1039/D0QI00632G

    20. [20]

      Wang Z X, Zhang X, Zhang Y Z, Li M X, Zhao H H, Andruh M, Dunbar K R. Single-Chain Magnetic Behavior in a Hetero-tri-spin Complex Mediated by Supramolecular Interactions with TCNQF·-Radicals[J]. Angew. Chem. Int. Ed., 2014,53:11567-11270. doi: 10.1002/anie.201407628

    21. [21]

      Vieru V, Pasatoiu T D, Ungur L, Suturina E, Madalan A M, Duhayon C, Sutter J P, Andruh M, ChibotaruL F. Synthesis, Crystal Struc-tures, Magnetic Properties, and Theoretical Investigation of a New Series of Ni-Ln-W Heterotrimetallics: Understanding the SMM Behavior of Mixed Polynuclear Complexes[J]. Inorg. Chem., 2016,55:12158-12171. doi: 10.1021/acs.inorgchem.6b01669

    22. [22]

      Huang X C, Zhou C, Wei H Y, Wang X Y. End-On Azido-Bridged 3d-4f Complexes Showing Single-Molecule Magnet Property[J]. Inorg. Chem., 2013,52:7314-7316. doi: 10.1021/ic400986y

    23. [23]

      Huang X C, Vieru V, Chibotaru L F, Wernsdorfer W, Jiang S D, Wang X Y. Determination of Magnetic Anisotropy in a Multinuclear Tb-Based Single-Molecule Magnet[J]. Chem. Commun., 2015,51:10373-10376. doi: 10.1039/C5CC03089G

    24. [24]

      Bain G A, Berry J F. Diamagnetic Corrections and Pascal′s Con-stants[J]. J. Chem. Educ., 2008,85:532-536. doi: 10.1021/ed085p532

    25. [25]

      SAINT, Version 7.68A, Bruler AXS, Inc., Madison, WI, 2008.

    26. [26]

      Sheldrick G M. SHELXTL, Version 6.14, Bruker AXS, Inc., Madison, WI, 2000-2003.

    27. [27]

      Sheldrick G M. Recent Upgrade to the SHELXL Refinement Program is also Available[J]. Acta Crystallogr. Sect. C, 2015.

    28. [28]

      Lo W K, Wong W K, Wong W Y, Guo J P, Yeung K T, Cheng Y K, Yang X P, Jones R A. Heterobimetallic Zn(Ⅱ)-Ln(Ⅲ) Phenylene- Bridged Schiff Base Complexes, Computational Studies, and Evidence for Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd3+ Luminescence[J]. Inorg. Chem., 2006,45:9315-9325. doi: 10.1021/ic0610177

    29. [29]

      Chuan H L, Jian H J, Ping Y, Li M T, Xu L, Sheng X X, Xiu P, Xu T, Jin Q X, Yi Z, Ming A X, Qiang G L. Preparation, Structure, and Thermochemical Properties of a Copper((Ⅱ)) Schiff-Base Complex[J]. J. Therm. Anal. Calorim., 2015,119:1285-1292. doi: 10.1007/s10973-014-4232-2

    30. [30]

      Melby L R, Harder R J, Hertler W R, Mahler W, Benson R E, Mochel W E. Substituted Quinodimethans. Ⅱ. Anion-Radical Derivatives and Complexes of 7, 7, 8, 8-Tetracyanoquinodimethan[J]. J. Am. Chem. Soc., 1962,84:3374-3387.

    31. [31]

      Llunell M, Casanova D, Cirera J, Alemany P, Alvarez S. SHAPE, Version 2.1, University of Barcelona, Spain, 2013.

    32. [32]

      Ballesteros - Rivas M, Ota A, Reinheimer E, Prosvirin A, Valldes-Martinez J, Dunbar K R. Highly Conducting Coordination Polymers Based on Infinite M(4, 4'-bpy) Chains Flanked by Regular Stacks of Non-integer TCNQ Radicals[J]. Angew. Chem. Int. Ed., 2011,50:9703-9707. doi: 10.1002/anie.201101658

    33. [33]

      Kahn O. Molecular Magnetism. New York: VCH, 1993.

    34. [34]

      Costes J P, Dahan F, Dupuis A, Laurent J P. Nature of the Magnetic Interaction in the (Cu2+, Ln3+) Pairs: An Empirical Approach Based on the Comparison between Homologous (Cu2+, Ln3+) and (NiLS2+, Ln3+) Complexes[J]. Chem. Eur. J., 1998,4:1616-1620. doi: 10.1002/(SICI)1521-3765(19980904)4:9<1616::AID-CHEM1616>3.0.CO;2-A

  • 加载中
    1. [1]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    2. [2]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    5. [5]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    6. [6]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    7. [7]

      Kun Zhang Ni Dan Dan-Dan Ren Ruo-Yu Zhang Xiaoyan Lu Ya-Pan Wu Li-Lei Zhang Hong-Ru Fu Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244

    8. [8]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    9. [9]

      Wenbi WuYinchu DongHaofan LiuXuebing JiangLi LiYi ZhangMaling Gou . Modification of plasma protein for bioprinting via photopolymerization. Chinese Chemical Letters, 2024, 35(8): 109260-. doi: 10.1016/j.cclet.2023.109260

    10. [10]

      Lijun MaoShuo LiXin ZhangZhan-Ting LiDa Ma . Cucurbit[n]uril-based nanostructure construction and modification. Chinese Chemical Letters, 2024, 35(8): 109363-. doi: 10.1016/j.cclet.2023.109363

    11. [11]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    12. [12]

      Chenghao GePeng WangPei YuanTai WuRongjun ZhaoRong HuangLin XieYong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352

    13. [13]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    14. [14]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    15. [15]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    16. [16]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    17. [17]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    18. [18]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    19. [19]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    20. [20]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

Metrics
  • PDF Downloads(4)
  • Abstract views(642)
  • HTML views(80)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return