Citation: Lin SUN, Jie XIE, Feng CHENG, Ruo-Yu CHEN, Qing-Li ZHU, Zhong JIN. Rapid Construction of Two-Dimensional N, S-Co-doped Porous Carbon for Realizing High-Performance Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1189-1198. doi: 10.11862/CJIC.2022.116 shu

Rapid Construction of Two-Dimensional N, S-Co-doped Porous Carbon for Realizing High-Performance Lithium-Sulfur Batteries

Figures(5)

  • In this work, based on the industrial refinery product of pitch, we have developed a simple method for the production of metal-free, nitrogen, and sulfur co-doping porous carbon nanosheets (NSPC). The obtained NSPC exhibited a high specific surface area (339 m2·g-1) and puissant adsorbability for sulfur fixation. At the same time, the co-doping of N and S can effectively improve the electrical conductivity of carbon nanomaterials, and further improve the adsorption and conversion reaction of lithium polysulfides (LIPSs). The NSPC/S electrode delivered superior cycling performance (762 mAh·g-1 at 0.6C after 200 cycles). This work represents a rapid and massive production of two-dimensional porous carbon materials with high content of N and S as the cathode for advanced lithium-sulfur batteries.
  • 加载中
    1. [1]

      Yoshino A. The Birth of the Lithium-Ion Battery[J]. Angew. Chem. Int. Ed., 2012,51:5798-5800. doi: 10.1002/anie.201105006

    2. [2]

      Lim W G, Kim S, Jo C, Lee J. A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics[J]. Angew. Chem. Int. Ed., 2019,58:18746-18757. doi: 10.1002/anie.201902413

    3. [3]

      Evers S, Nazar L F. New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes[J]. Acc. Chem. Res., 2013,46:1135-1143. doi: 10.1021/ar3001348

    4. [4]

      Lu Y, Qin J L, Shen T, Yu Y F, Chen K, Hu Y Z, Liang J N, Gong M X, Zhang J J, Wang D L. Hypercrosslinked Polymerization Enabled N-Doped Carbon Confined Fe2O3 Facilitating Li Polysulfides Interface Conversion for Li-S Batteries[J]. Adv. Energy Mater., 2021,112101780. doi: 10.1002/aenm.202101780

    5. [5]

      Li W T, Guo X T, Geng P B, Du M, Jing Q L, Chen X D, Zhang G X, Li H P, Xu Q, Braunstein P, Pang H. Rational Design and General Synthesis of Multimetallic Metal-Organic Framework Nano-Octahedra for Enhanced Li-S Battery[J]. Adv. Mater., 2021,332105163. doi: 10.1002/adma.202105163

    6. [6]

      Wang N N, Zhang X, Ju Z Y, Yu X W, Wang Y X, Du Y, Bai Z C, Dou S X, Yu G H. Thickness-Independent Scalable High-Performance Li-S Batteries with High Areal Sulfur Loading via Electron-Enriched Carbon Framework[J]. Nat. Commun., 2021,124519. doi: 10.1038/s41467-021-24873-4

    7. [7]

      Zhang S L, Ao X, Huang J, Wei B, Zhai Y L, Zhai D, Deng W Q, Su C L, Wang D S, L i, Y D. Isolated Single- Atom Ni- N5 Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium-Sulfur Batteries[J]. Nano Lett., 2021,21:9691-9698. doi: 10.1021/acs.nanolett.1c03499

    8. [8]

      Luo D, Li C J, Zhang Y G, Ma Q Y, Ma C Y, Nie Y H, Li M, Weng X F, Huang R, Zhao Y, Shui L L, Wang X, Chen Z W. Design of Quasi-MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for High-Performance Lithium-Sulfur Batteries[J]. Adv. Mater., 2021,342105541.

    9. [9]

      Wang T, Luo D, Zhang Y G, Zhang Z, Wang J Y, Cui G L, Wang X, Yu A P, Chen Z W. Hierarchically Porous Ti3C 2 MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium-Sulfur Batteries[J]. ACS Nano, 2021,15:19457-19467. doi: 10.1021/acsnano.1c06213

    10. [10]

      Wang M L, Sun Z T, Ci H N, Shi Z X, Shen L, Wei C H, Ding Y F, Yang X Z, Sun J Y. Identifying the Evolution of Selenium-Vacancy-Modulated MoSe2 Precatalyst in Lithium-Sulfur Chemistry[J]. Angew. Chem. Int. Ed., 2021,60:24558-24565. doi: 10.1002/anie.202109291

    11. [11]

      Qian T, Huang Y C, Zhang M D, Xia Z Z, Liu H Y, Guan L, Hu H, Wu M B. Non-corrosive and Low-Cost Synthesis of Hierarchically Porous Carbon Frameworks for High-Performance Lithium-Ion Capacitors[J]. Carbon, 2021,173:646-654. doi: 10.1016/j.carbon.2020.11.051

    12. [12]

      Guan L, Hu H, Li L Q, Pan Y Y, Zhu Y F, Li Q, Guo H L, Wang K, Huang Y C, Zhang M D, Yan Y C, Li Z T, Teng X L, Yang J W, Xiao J Z, Zhang Y N, Wang X S, Wu M B. Intrinsic Defect-Rich Hierarchically Porous Carbon Architectures Enabling Enhanced Capture and Catalytic Conversion of Polysulfides[J]. ACS Nano, 2020,14:6222-6231. doi: 10.1021/acsnano.0c02294

    13. [13]

      Guan L, Pan L, Peng T Y, Qian T, Huang Y C, Li X X, Gao C, Li Z, Hu H, Wu M B. Green and Scalable Synthesis of Porous Carbon Nanosheet- Assembled Hierarchical Architectures for Robust Capacitive Energy Harvesting[J]. Carbon, 2019,152:537-544. doi: 10.1016/j.carbon.2019.06.059

    14. [14]

      Park S K, Lee J K, Kang Y C. Yolk-Shell Structured Assembly of Bamboo-like Nitrogen-Doped Carbon Nanotubes Embedded with Co Nanocrystals and Their Application as Cathode Material for Li-S Batteries[J]. Adv. Funct. Mater., 2018,281705264. doi: 10.1002/adfm.201705264

    15. [15]

      Xu J, Lawson T, Fan H B, Su D W, Wang G X. Updated Metal Compounds (MOFs, -S, -OH, -N, -C) Used as Cathode Materials for Lithium-Sulfur Batteries[J]. Adv. Energy Mater., 2018,81702607. doi: 10.1002/aenm.201702607

    16. [16]

      Mi K, Chen S W, Xi B J, Kai S S, Jiang Y, Feng J K, Qian Y T, Xiong S L. Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dual-Doped Carbon at the Kilogram Scale for Lithium-Sulfur Batteries[J]. Adv. Funct. Mater., 2017,271604265. doi: 10.1002/adfm.201604265

    17. [17]

      Zhang L L, Wan F, Wang X Y, Cao H M, Dai X, Niu Z Q, Wang Y J, Chen J. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries[J]. ACS Appl. Mater. Interfaces, 2018,10:5594-5602. doi: 10.1021/acsami.7b18894

    18. [18]

      Peng Y Y, Zhang Y Y, Huang J X, Wang Y H, Li H, Hwang B J, Zhao J B. Nitrogen and Oxygen Dual-Doped Hollow Carbon Nano-spheres Derived from Catechol/Polyamine as Sulfur Hosts for Advanced Lithium Sulfur Batteries[J]. Carbon, 2017,124:23-33. doi: 10.1016/j.carbon.2017.08.035

    19. [19]

      Zhou W D, Wang C M, Zhang Q L, Abruña , H D, He Y, Wang J W, Mao S X, Xiao X C. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confining Sulfur in Lithium-Sulfur Batteries[J]. Adv. Energy Mater., 2015,51401752. doi: 10.1002/aenm.201401752

    20. [20]

      Lin T Q, Chen I. W, Liu F X, Yang C Y, Bi H, Xu F F, Huang F Q. Nitrogen-Doped Mesoporous Carbon of Extraordinary Capacitance for Electrochemical Energy Storage[J]. Science, 2015,350:1508-1513.

    21. [21]

      Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang DH. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes[J]. Angew. Chem. Int. Ed., 2015,54:4325-4329. doi: 10.1002/anie.201411109

    22. [22]

      Song J X, Xu T, Gordin M L, Zhu P Y, Lv D P, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High- Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries[J]. Adv. Funct. Mater., 2014,24:1243-1250. doi: 10.1002/adfm.201302631

    23. [23]

      Blöchl P E. Projector Augmented-Wave Method[J]. Phys. Rev. B, 1994,50:17953-17979. doi: 10.1103/PhysRevB.50.17953

    24. [24]

      Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett., 1996,77:3865-3868. doi: 10.1103/PhysRevLett.77.3865

    25. [25]

      Zhao Y C, Liu Z, Chu W G, Song L, Zhang Z X, Yu D L, Tian Y J, Xie S S, Sun L F. Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor[J]. Adv. Mater., 2008,20:1777-1781. doi: 10.1002/adma.200702230

    26. [26]

      Kesavan D, Mariappan V K, Krishnamoorthy K, Kim S J. Carbothermal Conversion of Boric Acid into Boron-Oxy-carbide Nanostructures for High-Power Supercapacitors[J]. J. Mater. Chem. A, 2021,9:915-921. doi: 10.1039/D0TA09154E

    27. [27]

      Wang X, Wang J, Wang D L, Dou S, Ma Z L, Wu J H, Tao L, Shen A L, Ouyang C B, Liu Q H, Wang S Y. One-Pot Synthesis of Nitrogen and Sulfur Co-doped Graphene as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction[J]. Chem. Commun., 2014,50:4839-4842. doi: 10.1039/C4CC00440J

    28. [28]

      Zhou Y J, Zhang L X, Huang W M, Kong Q H, Fan X Q, Wang M, Shi J L. N-Doped Graphitic Carbon-Incorporated g-C3 N4 for Remarkably Enhanced Photocatalytic H2 Evolution under Visible Light[J]. Carbon, 2016,99:111-117. doi: 10.1016/j.carbon.2015.12.008

    29. [29]

      Lei W, Xiao W P, Li J D, Li G R, Wu Z X, Xuan C J, Luo D, Deng Y P, Wang D L, Chen Z W. Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity[J]. ACS Appl. Mater. Interfaces, 2017,9:28604-28611. doi: 10.1021/acsami.7b08704

    30. [30]

      Zhu Y E, Yang L P, Zhou X L, Li F, Wei J P, Zhou Z. Boosting the Rate Capability of Hard Carbon with an Ether-Based Electrolyte for Sodium Ion Batteries[J]. J. Mater. Chem. A, 2017,5:9528-9532. doi: 10.1039/C7TA02515G

    31. [31]

      Klingele M, Pham C, Vuyyuru K R, Britton B, Holdcroft S, Fischer A, Thiele S. Sulfur Doped Reduced Graphene Oxide as Metal-Free Catalyst for the Oxygen Reduction Reaction in Anion and Proton Exchange Fuel Cells[J]. Electrochem. Commun., 2017,77:71-75. doi: 10.1016/j.elecom.2017.02.015

    32. [32]

      Yang S B, Zhi L J, Tang K, Feng X L, Maier J, Müllen K. Efficient Synthesis of Heteroatom (N or S)- Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions[J]. Adv. Funct. Mater., 2012,22:3634-3640. doi: 10.1002/adfm.201200186

    33. [33]

      Peng L L, Wei Z Y, Wan C Z, Li J, Chen Z, Zhu D, Baumann D, Liu H T, Allen C S, Xu X, Kirkland A I, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X F. A Fundamental Look at Electrocatalytic Sulfur Reduction Reaction[J]. Nat. Catal., 2020,3:762-770. doi: 10.1038/s41929-020-0498-x

    34. [34]

      Zhang H, Yang L, Zhang P G, Lu C J, Sha D W, Yan B Z, He W, Zhou M, Zhang W, Pan L, Sun Z M. MXene-Derived Tin O2n-1 Quantum Dots Distributed on Porous Carbon Nanosheets for Stable and Long-Life Li-S Batteries: Enhanced Polysulfide Mediation via Defect Engineering[J]. Adv. Mater., 2021,332008447. doi: 10.1002/adma.202008447

  • 加载中
    1. [1]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    2. [2]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    3. [3]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    4. [4]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    5. [5]

      Jun JiangTong GuoWuxin BaiMingliang LiuShujun LiuZhijie QiJingwen SunShugang PanAleksandr L. VasilievZhiyuan MaXin WangJunwu ZhuYongsheng Fu . Modularized sulfur storage achieved by 100% space utilization host for high performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(4): 108565-. doi: 10.1016/j.cclet.2023.108565

    6. [6]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    7. [7]

      Peng ZhouZiang JiangYang LiPeng XiaoFeixiang Wu . Sulphur-template method for facile manufacturing porous silicon electrodes with enhanced electrochemical performance. Chinese Chemical Letters, 2024, 35(8): 109467-. doi: 10.1016/j.cclet.2023.109467

    8. [8]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    9. [9]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    10. [10]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    11. [11]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    12. [12]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    13. [13]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    14. [14]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

    15. [15]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    16. [16]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    17. [17]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    18. [18]

      Yufeng WuMingjun JingJuan LiWenhui DengMingguang YiZhanpeng ChenMeixia YangJinyang WuXinkai XuYanson BaiXiaoqing ZouTianjing WuXianyou Wang . Collaborative integration of Fe-Nx active center into defective sulfur/selenium-doped carbon for efficient oxygen electrocatalysts in liquid and flexible Zn-air batteries. Chinese Chemical Letters, 2024, 35(9): 109269-. doi: 10.1016/j.cclet.2023.109269

    19. [19]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    20. [20]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

Metrics
  • PDF Downloads(10)
  • Abstract views(691)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return