-
[1]
Yoshino A. The Birth of the Lithium-Ion Battery[J]. Angew. Chem. Int. Ed.,
2012,51:5798-5800.
doi: 10.1002/anie.201105006
-
[2]
Lim W G, Kim S, Jo C, Lee J. A Comprehensive Review of Materials with Catalytic Effects in Li-S Batteries: Enhanced Redox Kinetics[J]. Angew. Chem. Int. Ed.,
2019,58:18746-18757.
doi: 10.1002/anie.201902413
-
[3]
Evers S, Nazar L F. New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes[J]. Acc. Chem. Res.,
2013,46:1135-1143.
doi: 10.1021/ar3001348
-
[4]
Lu Y, Qin J L, Shen T, Yu Y F, Chen K, Hu Y Z, Liang J N, Gong M X, Zhang J J, Wang D L. Hypercrosslinked Polymerization Enabled N-Doped Carbon Confined Fe2O3 Facilitating Li Polysulfides Interface Conversion for Li-S Batteries[J]. Adv. Energy Mater.,
2021,112101780.
doi: 10.1002/aenm.202101780
-
[5]
Li W T, Guo X T, Geng P B, Du M, Jing Q L, Chen X D, Zhang G X, Li H P, Xu Q, Braunstein P, Pang H. Rational Design and General Synthesis of Multimetallic Metal-Organic Framework Nano-Octahedra for Enhanced Li-S Battery[J]. Adv. Mater.,
2021,332105163.
doi: 10.1002/adma.202105163
-
[6]
Wang N N, Zhang X, Ju Z Y, Yu X W, Wang Y X, Du Y, Bai Z C, Dou S X, Yu G H. Thickness-Independent Scalable High-Performance Li-S Batteries with High Areal Sulfur Loading via Electron-Enriched Carbon Framework[J]. Nat. Commun.,
2021,124519.
doi: 10.1038/s41467-021-24873-4
-
[7]
Zhang S L, Ao X, Huang J, Wei B, Zhai Y L, Zhai D, Deng W Q, Su C L, Wang D S, L i, Y D. Isolated Single- Atom Ni- N5 Catalytic Site in Hollow Porous Carbon Capsules for Efficient Lithium-Sulfur Batteries[J]. Nano Lett.,
2021,21:9691-9698.
doi: 10.1021/acs.nanolett.1c03499
-
[8]
Luo D, Li C J, Zhang Y G, Ma Q Y, Ma C Y, Nie Y H, Li M, Weng X F, Huang R, Zhao Y, Shui L L, Wang X, Chen Z W. Design of Quasi-MOF Nanospheres as a Dynamic Electrocatalyst toward Accelerated Sulfur Reduction Reaction for High-Performance Lithium-Sulfur Batteries[J]. Adv. Mater.,
2021,342105541.
-
[9]
Wang T, Luo D, Zhang Y G, Zhang Z, Wang J Y, Cui G L, Wang X, Yu A P, Chen Z W. Hierarchically Porous Ti3C 2 MXene with Tunable Active Edges and Unsaturated Coordination Bonds for Superior Lithium-Sulfur Batteries[J]. ACS Nano,
2021,15:19457-19467.
doi: 10.1021/acsnano.1c06213
-
[10]
Wang M L, Sun Z T, Ci H N, Shi Z X, Shen L, Wei C H, Ding Y F, Yang X Z, Sun J Y. Identifying the Evolution of Selenium-Vacancy-Modulated MoSe2 Precatalyst in Lithium-Sulfur Chemistry[J]. Angew. Chem. Int. Ed.,
2021,60:24558-24565.
doi: 10.1002/anie.202109291
-
[11]
Qian T, Huang Y C, Zhang M D, Xia Z Z, Liu H Y, Guan L, Hu H, Wu M B. Non-corrosive and Low-Cost Synthesis of Hierarchically Porous Carbon Frameworks for High-Performance Lithium-Ion Capacitors[J]. Carbon,
2021,173:646-654.
doi: 10.1016/j.carbon.2020.11.051
-
[12]
Guan L, Hu H, Li L Q, Pan Y Y, Zhu Y F, Li Q, Guo H L, Wang K, Huang Y C, Zhang M D, Yan Y C, Li Z T, Teng X L, Yang J W, Xiao J Z, Zhang Y N, Wang X S, Wu M B. Intrinsic Defect-Rich Hierarchically Porous Carbon Architectures Enabling Enhanced Capture and Catalytic Conversion of Polysulfides[J]. ACS Nano,
2020,14:6222-6231.
doi: 10.1021/acsnano.0c02294
-
[13]
Guan L, Pan L, Peng T Y, Qian T, Huang Y C, Li X X, Gao C, Li Z, Hu H, Wu M B. Green and Scalable Synthesis of Porous Carbon Nanosheet- Assembled Hierarchical Architectures for Robust Capacitive Energy Harvesting[J]. Carbon,
2019,152:537-544.
doi: 10.1016/j.carbon.2019.06.059
-
[14]
Park S K, Lee J K, Kang Y C. Yolk-Shell Structured Assembly of Bamboo-like Nitrogen-Doped Carbon Nanotubes Embedded with Co Nanocrystals and Their Application as Cathode Material for Li-S Batteries[J]. Adv. Funct. Mater.,
2018,281705264.
doi: 10.1002/adfm.201705264
-
[15]
Xu J, Lawson T, Fan H B, Su D W, Wang G X. Updated Metal Compounds (MOFs, -S, -OH, -N, -C) Used as Cathode Materials for Lithium-Sulfur Batteries[J]. Adv. Energy Mater.,
2018,81702607.
doi: 10.1002/aenm.201702607
-
[16]
Mi K, Chen S W, Xi B J, Kai S S, Jiang Y, Feng J K, Qian Y T, Xiong S L. Sole Chemical Confinement of Polysulfides on Nonporous Nitrogen/Oxygen Dual-Doped Carbon at the Kilogram Scale for Lithium-Sulfur Batteries[J]. Adv. Funct. Mater.,
2017,271604265.
doi: 10.1002/adfm.201604265
-
[17]
Zhang L L, Wan F, Wang X Y, Cao H M, Dai X, Niu Z Q, Wang Y J, Chen J. Dual-Functional Graphene Carbon as Polysulfide Trapper for High-Performance Lithium Sulfur Batteries[J]. ACS Appl. Mater. Interfaces,
2018,10:5594-5602.
doi: 10.1021/acsami.7b18894
-
[18]
Peng Y Y, Zhang Y Y, Huang J X, Wang Y H, Li H, Hwang B J, Zhao J B. Nitrogen and Oxygen Dual-Doped Hollow Carbon Nano-spheres Derived from Catechol/Polyamine as Sulfur Hosts for Advanced Lithium Sulfur Batteries[J]. Carbon,
2017,124:23-33.
doi: 10.1016/j.carbon.2017.08.035
-
[19]
Zhou W D, Wang C M, Zhang Q L, Abruña , H D, He Y, Wang J W, Mao S X, Xiao X C. Tailoring Pore Size of Nitrogen-Doped Hollow Carbon Nanospheres for Confining Sulfur in Lithium-Sulfur Batteries[J]. Adv. Energy Mater.,
2015,51401752.
doi: 10.1002/aenm.201401752
-
[20]
Lin T Q, Chen I. W, Liu F X, Yang C Y, Bi H, Xu F F, Huang F Q. Nitrogen-Doped Mesoporous Carbon of Extraordinary Capacitance for Electrochemical Energy Storage[J]. Science,
2015,350:1508-1513.
-
[21]
Song J X, Gordin M L, Xu T, Chen S R, Yu Z X, Sohn H, Lu J, Ren Y, Duan Y H, Wang DH. Strong Lithium Polysulfide Chemisorption on Electroactive Sites of Nitrogen-Doped Carbon Composites For High-Performance Lithium-Sulfur Battery Cathodes[J]. Angew. Chem. Int. Ed.,
2015,54:4325-4329.
doi: 10.1002/anie.201411109
-
[22]
Song J X, Xu T, Gordin M L, Zhu P Y, Lv D P, Jiang Y B, Chen Y S, Duan Y H, Wang D H. Nitrogen-Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High- Areal-Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium-Sulfur Batteries[J]. Adv. Funct. Mater.,
2014,24:1243-1250.
doi: 10.1002/adfm.201302631
-
[23]
Blöchl P E. Projector Augmented-Wave Method[J]. Phys. Rev. B,
1994,50:17953-17979.
doi: 10.1103/PhysRevB.50.17953
-
[24]
Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Phys. Rev. Lett.,
1996,77:3865-3868.
doi: 10.1103/PhysRevLett.77.3865
-
[25]
Zhao Y C, Liu Z, Chu W G, Song L, Zhang Z X, Yu D L, Tian Y J, Xie S S, Sun L F. Large-Scale Synthesis of Nitrogen-Rich Carbon Nitride Microfibers by Using Graphitic Carbon Nitride as Precursor[J]. Adv. Mater.,
2008,20:1777-1781.
doi: 10.1002/adma.200702230
-
[26]
Kesavan D, Mariappan V K, Krishnamoorthy K, Kim S J. Carbothermal Conversion of Boric Acid into Boron-Oxy-carbide Nanostructures for High-Power Supercapacitors[J]. J. Mater. Chem. A,
2021,9:915-921.
doi: 10.1039/D0TA09154E
-
[27]
Wang X, Wang J, Wang D L, Dou S, Ma Z L, Wu J H, Tao L, Shen A L, Ouyang C B, Liu Q H, Wang S Y. One-Pot Synthesis of Nitrogen and Sulfur Co-doped Graphene as Efficient Metal-Free Electrocatalysts for the Oxygen Reduction Reaction[J]. Chem. Commun.,
2014,50:4839-4842.
doi: 10.1039/C4CC00440J
-
[28]
Zhou Y J, Zhang L X, Huang W M, Kong Q H, Fan X Q, Wang M, Shi J L. N-Doped Graphitic Carbon-Incorporated g-C3 N4 for Remarkably Enhanced Photocatalytic H2 Evolution under Visible Light[J]. Carbon,
2016,99:111-117.
doi: 10.1016/j.carbon.2015.12.008
-
[29]
Lei W, Xiao W P, Li J D, Li G R, Wu Z X, Xuan C J, Luo D, Deng Y P, Wang D L, Chen Z W. Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity[J]. ACS Appl. Mater. Interfaces,
2017,9:28604-28611.
doi: 10.1021/acsami.7b08704
-
[30]
Zhu Y E, Yang L P, Zhou X L, Li F, Wei J P, Zhou Z. Boosting the Rate Capability of Hard Carbon with an Ether-Based Electrolyte for Sodium Ion Batteries[J]. J. Mater. Chem. A,
2017,5:9528-9532.
doi: 10.1039/C7TA02515G
-
[31]
Klingele M, Pham C, Vuyyuru K R, Britton B, Holdcroft S, Fischer A, Thiele S. Sulfur Doped Reduced Graphene Oxide as Metal-Free Catalyst for the Oxygen Reduction Reaction in Anion and Proton Exchange Fuel Cells[J]. Electrochem. Commun.,
2017,77:71-75.
doi: 10.1016/j.elecom.2017.02.015
-
[32]
Yang S B, Zhi L J, Tang K, Feng X L, Maier J, Müllen K. Efficient Synthesis of Heteroatom (N or S)- Doped Graphene Based on Ultrathin Graphene Oxide-Porous Silica Sheets for Oxygen Reduction Reactions[J]. Adv. Funct. Mater.,
2012,22:3634-3640.
doi: 10.1002/adfm.201200186
-
[33]
Peng L L, Wei Z Y, Wan C Z, Li J, Chen Z, Zhu D, Baumann D, Liu H T, Allen C S, Xu X, Kirkland A I, Shakir I, Almutairi Z, Tolbert S, Dunn B, Huang Y, Sautet P, Duan X F. A Fundamental Look at Electrocatalytic Sulfur Reduction Reaction[J]. Nat. Catal.,
2020,3:762-770.
doi: 10.1038/s41929-020-0498-x
-
[34]
Zhang H, Yang L, Zhang P G, Lu C J, Sha D W, Yan B Z, He W, Zhou M, Zhang W, Pan L, Sun Z M. MXene-Derived Tin O2n-1 Quantum Dots Distributed on Porous Carbon Nanosheets for Stable and Long-Life Li-S Batteries: Enhanced Polysulfide Mediation via Defect Engineering[J]. Adv. Mater.,
2021,332008447.
doi: 10.1002/adma.202008447