Citation: Wen-Lin ZU, Li LI, Ji-Wei HUANG, Ying-Ru SUN, Feng-Yan MA, Yan-Zhen CAO. Multi-pathway Photoelectron Migration and Photocatalytic Properties of AgIn5S8/Carbon Quantum Dots/ZnIn2S4[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1059-1072. doi: 10.11862/CJIC.2022.113 shu

Multi-pathway Photoelectron Migration and Photocatalytic Properties of AgIn5S8/Carbon Quantum Dots/ZnIn2S4

Figures(13)

  • Firstly, ZnIn2S4 was modified by the up-conversion photoluminescence (UCPL) properties of carbon quantum dots (CQDs), and AgIn 5S8/CQDs/ZnIn 2S4 composite was prepared by ion - exchange method. X - ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-VIS DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption-desorption test, photoluminescence (PL), and electrochemical impedance (EIS) were used to characterize the composition, structure, morphology, surface physical, and chemical properties of the composite. The results show that the synergistic effect between the different components in the composite results in a broad spectral response (250 - 800 nm). Compared with the comparative system, AgIn5S 8/CQDs/ZnIn2S 4 exhibited significantly enhanced photocurrent density, smaller charge transfer resistance, and prolonged photo - generated carrier lifetime. The photocatalytic activity of AgIn5S 8 /CQDs/ ZnIn2S4 was studied under different light sources using methyl orange as the model molecule. The results showed that AgIn5S8/CQDs/ZnIn2S4 had an enhanced photocatalytic activity. At the same time, the composite not only had a high photolysis water hydrogen production capacity (312.09 μmol·h-1·g-1) but also had good stability.
  • 加载中
    1. [1]

      Chen Y, Lu Q, Yan X, Mo Q H, Chen Y, Liu B T, Teng L M, Xiao W, Ge L S, Wang Q Y. Enhanced Photocatalytic Activity of the Carbon Quantum Dot-Modified BiOI Microsphere[J]. Nanoscale Res. Lett., 2016,11(1):60-66. doi: 10.1186/s11671-016-1262-7

    2. [2]

      Kudo A, Miseki Y. Heterogeneous Photocatalyst Materials for Water Splitting[J]. Chem. Soc. Rev., 2009,38(1):253-278. doi: 10.1039/B800489G

    3. [3]

      Fujishima A, Zhang X, Tryk D A. Photocatalysis and Related Surface Phenomena[J]. Surf. Sci. Rep., 2008,63:515-582. doi: 10.1016/j.surfrep.2008.10.001

    4. [4]

      Jing Q F, Feng X Y, Zhao X J, Duan Z Y, Pan J L, Chen L M, Liu Y N. Bi/BiVO4 Chainlike Hollow Microstructures: Synthesis, Characterization and Application as Visible - Light - Active Photocatalysts[J]. ACS Appl. Nano Mater., 2018,1(6):2653-2661. doi: 10.1021/acsanm.8b00330

    5. [5]

      Li X, Xie J, Jiang C J, Yu J G, Zhang P Y. Review on Design and Evaluation of Environmental Photocatalysts[J]. Front. Environ. Sci. Eng., 2018,12(5):14-20. doi: 10.1007/s11783-018-1076-1

    6. [6]

      Han X G, He X X, Sun L M, Han X, Zhan W W, Xu J H, Wang X J, Chen J Q. Increasing Effectiveness of Photogenerated Carriers by In Situ Anchoring of Cu2O Nanoparticles on a Nitrogen - Doped Porous Carbon Yolk-Shell Cuboctahedral Framework[J]. ACS Catal., 2018,8(4):3348-3356. doi: 10.1021/acscatal.7b04219

    7. [7]

      Fang J, Gu J J, Liu Q L, Wang Z, Su H L, Zhang D. Three-Dimensional CdS/Au Butterfly Wing Scales with Hierarchical Rib Structures for Plasmon - Enhanced Photocatalytic Hydrogen Production[J]. ACS Appl. Matter. Interfaces, 2018,10(23):19649-19655. doi: 10.1021/acsami.8b03064

    8. [8]

      Torralvo - Fernandez M J, Enciso E, Martinez S, Sobrados I, Sanz J, Tonti D, Soria J, Yurdakal S, Palmisano G, Augugliaro V. Influence of the Preparation Temperature on the Photocatalytic Activity of 3D - Ordered Macroporous Anatase Formed with an Opal Polymer Template[J]. ACS Appl. Nano Mater., 2018,1(6):2567-2578. doi: 10.1021/acsanm.8b00253

    9. [9]

      Liu J, Zhao H, Wu M, Schueren B V D, Li Y, Deparis O, Ye J H, Ozin G A, Hasan T, Su B L. Slow Photons for Photocatalysis and Photovoltaics[J]. Adv. Mater., 2017,29(17)1605349. doi: 10.1002/adma.201605349

    10. [10]

      Zhang J Q, Li L, Liu D, Zhang J J, Hao Y T, Zhang W Z. Multi- layer and Open Three - Dimensionally Ordered Macroporous TiO2 - ZrO2 Composite: Diversified Design and the Comparison of Multiple Mode Photocatalytic Performance[J]. Mater. Des., 2015,86:818-828. doi: 10.1016/j.matdes.2015.07.166

    11. [11]

      Kandi D, Martha S, Parida K M. Quantum Dots as Enhancer in Photocatalytic Hydrogen Evolution: A Review[J]. Int. J. Hydrogen Energy, 2017,42(15):9467-9481. doi: 10.1016/j.ijhydene.2017.02.166

    12. [12]

      Kwon W, Lee G, Do S, Joo T, Rhee S W. Size-Controlled Soft-Template Synthesis of Carbon Nanodots toward Versatile Photoactive Materials[J]. Small, 2014,10(3):506-513. doi: 10.1002/smll.201301770

    13. [13]

      Jia T K, Liu M, Zheng C Y, Long F, Min Z Y, Fu F, Yu D S, Li J L, Lee J H, Kim N H. One - Pot Hydrothermal Synthesis of La - Doped ZnIn2S4 Microspheres with Improved Visible - Light Photocatalytic Performance[J]. Nanomaterials, 2020,10(10)2026. doi: 10.3390/nano10102026

    14. [14]

      Tian F, Zhu R S, Zhong J, Wang P, Ouyang F, Cao G. An efficient Preparation Method of RGO/ZnIn2S4 for Photocatalytic Hydrogen Generation under Visible Light[J]. Int. J. Hydrogen Energy, 2016,41(44):20156-20171. doi: 10.1016/j.ijhydene.2016.08.063

    15. [15]

      Shen S H, Zhao L, Guan X J, Guo L J. Improving Visible-Light Photocatalytic Activity for Hydrogen Evolution over ZnIn2S4: A Case Study of Alkaline-Earth Metal Doping[J]. J. Phys. Chem. Solids, 2011,73(1):79-83.

    16. [16]

      Goswami T, Kumaryadav D K, Bhatt H, Kuar G, Shukla A, Babu K J, Ghosh H N. Defect - Mediated Slow Carrier Recombination and Broad Photoluminescence in Non-metal-Doped ZnIn2S4 Nanosheets for Enhanced Photocatalytic Activity[J]. J. Phys. Chem. Lett., 2021,12(20):5000-5008. doi: 10.1021/acs.jpclett.1c01203

    17. [17]

      Yang Z F, Shao L H, Wang L L, Xia X N, Liu Y T, Cheng S, Yang C, Li S J. Boosted Photogenerated Carriers Separation in Z - Scheme Cu3P/ZnIn2S4 Heterojunction Photocatalyst for Highly Efficient H2 Evolution under Visible Light[J]. Int. J. Hydrogen Energy, 2020,45(28):14334-14346. doi: 10.1016/j.ijhydene.2020.03.139

    18. [18]

      Guan Z J, Xu Z Q, Li Q Y, Wang P, Li G Q, Yang J J. AgIn5S8 Nanoparticles Anchored on 2D Layered ZnIn2S4 to Form 0D/2D Heterojunction for Enhanced Visible - Light Photocatalytic Hydrogen Evolution[J]. Appl. Catal. B, 2018,227:512-518. doi: 10.1016/j.apcatb.2018.01.068

    19. [19]

      Zhang Q, Wang M, Ao M Y, Luo Y B, Zhang A T, Zhao L N, Yan L S, Deng F, Luo X B. Solvothermal Synthesis of Z - Scheme AgIn5S 8/Bi2WO6 Nano-Heterojunction with Excellent Performance for Photocatalytic Degradation and Cr(Ⅵ) Reduction[J]. J. Alloys Compd., 2019,805:41-49. doi: 10.1016/j.jallcom.2019.06.331

    20. [20]

      Zhu S M, Zhang Y N, Qian X J, Wang X X, Su W Y. Zn Defects - Mediated Z - Scheme Electron - Hole Separation in AgIn5S8/ZnS Heterojunction for Enhanced Visible-Light Photocatalytic Hydrogen Evolution[J]. Appl. Surf. Sci., 2020,504144396. doi: 10.1016/j.apsusc.2019.144396

    21. [21]

      Lin Z Q, Zheng Y, Deng F, Luo X B, Zou J P, Shao P H, Zhang S Q, Tang H B. Target - Directed Design of Dual - Functional Z - Scheme AgIn5S8/SnS2 Heterojunction for Pb(Ⅱ) Capture and Photocatalytic Reduction of Cr(Ⅵ): Performance and Mechanism Insight[J]. Sep. Purif. Technol., 2021,277119430. doi: 10.1016/j.seppur.2021.119430

    22. [22]

      Zhang W J, Li D Z, Sun M, Shao Y, Chen Z X, Xiao G C, Fu X Z. Microwave Hydrothermal Synthesis and Photocatalytic Activity of AgIn5S8 for the Degradation of Dye[J]. J. Solid State Chem., 2010,183(10):2466-2474. doi: 10.1016/j.jssc.2010.08.011

    23. [23]

      Chen D, Ye J H. Photocatalytic H2 Evolution under Visible Light Irradiation on AgIn5S8 Photocatalyst[J]. J. Phys. Chem. Solids, 2007,68:2317-2320. doi: 10.1016/j.jpcs.2007.07.059

    24. [24]

      Shen S H, Zhao L, Guo L J. Cetyltrimethylammoniumbromide (CTAB)-Assisted Hydrothermal Synthesis of ZnIn 2S4 as an Efficient Visible-Light-Driven Photocatalyst for Hydrogen Production[J]. Int. J. Hydrogen Energy, 2008,33(17):4501-4510. doi: 10.1016/j.ijhydene.2008.05.043

    25. [25]

      Wu W T, Zhan L Y, Fan W Y, Song J Z, Li X M, Li Z T, Wang R Q, Zhang J Q, Zheng J T, Wu M B, Zeng H B. Cu - N Dopants Boost Electron Transfer and Photooxidation Reactions of Carbon Dots[J]. Angew. Chem. Int. Ed., 2015,54:4929-4932.

    26. [26]

      Liu Y, Yu Y X, Zhang W D. Carbon Quantum Dots - Doped CdS Microspheres with Enhanced Photocatalytic Performance[J]. J. Alloys Compd., 2013,569(25):102-110.

    27. [27]

      Miao R, Luo Z, Zhong W, Chen S Y, Jiang T, Dutta B, Nasr Y, Zhang Y S, Suib S L. Mesoporous TiO2 Modified with Carbon Quantum Dots as a High-Performance Visible Light Photocatalyst[J]. Appl. Catal. B, 2016,189:26-38. doi: 10.1016/j.apcatb.2016.01.070

    28. [28]

      Li M Y, Ma C J, Wang G L, Zhang X F, Dong X L, Ma H C. Controlling the Up - Conversion Photoluminescence Property of Carbon Quantum Dots (CQDs) by Modifying Its Surface Functional Groups for Enhanced Photocatalytic Performance of CQDs/BiVO4 under a Broad-Spectrum Irradiation[J]. Res. Chem. Intermed., 2021,47(8):3467-3485.

    29. [29]

      Yuan C, Liu B H, Liu F, Han M Y, Zhang Z P. Fluorescence "Turn On" Detection of Mercuric Ion Based on Bis(dithiocarbamato)copper(Ⅱ) Complex Functionalized Carbon Nanodots[J]. Anal. Chem., 2014,86(2):1123-1130. doi: 10.1021/ac402894z

    30. [30]

      Ye L, Li Z H. Rapid Microwave-Assisted Syntheses of Reduced Graphene Oxide (RGO)/ZnIn2S4 Microspheres as Superior Noble-Metal-Free Photocatalyst for Hydrogen Evolutions under Visible Light[J]. Appl. Catal. B, 2014,160-161:552-557. doi: 10.1016/j.apcatb.2014.06.012

    31. [31]

      Shi W L, Lv H C, Yuan S L, Huang H, Liu Y, Kang Z H. Synergetic Effect of Carbon Dots as Co - catalyst for Enhanced Photocatalytic Performance of Methyl Orange on ZnIn2S4 Microspheres[J]. Sep. Purif. Technol., 2017,174:282-289. doi: 10.1016/j.seppur.2016.11.013

    32. [32]

      Agostinelli E, Baistooni C, Fiorani D, Mattogno G, Nogues M. An XPS Study of the Electronic Structure of the ZnxCd1-xCr2X 4 (X=S, Se) Spinel System[J]. J. Phys. Chem. Solids, 1989,50(3):269-272. doi: 10.1016/0022-3697(89)90487-3

    33. [33]

      Muijsers J C, Weber T, Vanhardeveld R M, Zandbergen H W, Niemantsverdriet J W. Sulfidation Study of Molybdenum Oxide Using MoO3/SiO2/Si(100) Model Catalysis and Mo3 - Sulfur Cluster Compounds[J]. J. Catal., 1995,157(2):689-705.

    34. [34]

      Hu X L, Yu J C, Gong J M, Li Q. Rapid Mass Production of Hierarchically Porous ZnIn2S4 Submicrospheres via a Microwave-Solvothermal Process[J]. Cryst. Growth Des., 2007,7(12):2444-2448. doi: 10.1021/cg060767o

    35. [35]

      Wang R, Zhao L J, Li L, Song Q, Huang J W. Rose Spherical Structure Ag2S/ZnIn2S4/ZnS Composites with Visible Light Response: Enhanced Photodegradation and Hydrogen Production Performance[J]. J. Phys. Chem. Solids, 2020,136109148. doi: 10.1016/j.jpcs.2019.109148

    36. [36]

      Ding Y, Gao Y H, Li Z H. Carbon Quantum Dots (CQDs) and Co(dmgH) 2PyCl Synergistically Promote Photocatalytic Hydrogen Evolution over Hexagonal ZnIn2S 4[J]. J. Appl. Surf. Sci., 2018,462:255-262. doi: 10.1016/j.apsusc.2018.08.006

    37. [37]

      Wang B Q, Deng Z R, Fu X Z, Li Z H. Photoreduction Obtained MoS2/CQDs for Assembly of Ternary MoS2/CQDs/ZnIn 2S4 Nanocomposite for Efficient Photocatalytic Hydrogen Evolution under Visible Light[J]. J. Mater. Chem. A, 2018,6(40):19735-19742. doi: 10.1039/C8TA07797E

    38. [38]

      Griinert W G, Schlogl R, Kargef H G. Investigations of Zeolites by Photoelectron and Ion Scattering Spectroscopy. 1. New Applications of Surface Spectroscopic Methods to Zeolites by a High-Temperature Measurement Technique[J]. J. Phys. Chem. B, 1993,97:8638-8645. doi: 10.1021/j100135a017

    39. [39]

      Li K, Chai B, Peng T Y, Mao J, Zan L. Preparation of AgIn5S8/TiO2 Heterojunction Nanocomposite and Its Enhanced Photocatalytic H2 Production Property under Visible Light[J]. ACS Catal., 2013,3:170-177. doi: 10.1021/cs300724r

    40. [40]

      Huang J W, Li L, Chen J Q, Ma F Y, Yu Y. Broad Spectrum Response Flower Spherical - like Composites CQDs@CdIn2S4/CdS Modified by CQDs with Up - Conversion Property for Photocatalytic Degradation and Water Splitting[J]. Int. J. Hydrogen Energy, 2020,45(3):1822-1836. doi: 10.1016/j.ijhydene.2019.11.078

    41. [41]

      Li Y X, Zhang W Z, Li L, Yi C X, Lv H Y, Song Q. Litchi-like CdS/ CdTiO3-TiO2 Composite: Synthesis and Enhanced Photocatalytic Performance for Crystal Violet Degradation and Hydrogen Production[J]. RSC Adv., 2016,6(56):51374-51386. doi: 10.1039/C6RA05631H

    42. [42]

      Bozetine H, Meziane S, Aziri S, Berkane N, Allam D, Boudinar S, Hadjersi T. Facile and Green Synthesis of a ZnO/CQDs/AgNPs Ternary Heterostructure Photocatalyst: Study of the Methylene Blue Dye Photodegradation[J]. Bull. Mater. Sci., 2021,44(1)64. doi: 10.1007/s12034-021-02353-1

    43. [43]

      Wang F L, Wang Y F, Feng Y P, Zeng Y Q, Xie Z J, Zhang Q X, Su Y H, Chen P, Liu Y, Yao K, Lv W Y, Liu G G. Novel Ternary Photocatalyst of Single Atom-Dispersed Silver and Carbon Quantum Dots Co-loaded with Ultrathin g-C3N4 for Broad Spectrum Photocatalytic Degradation of Naproxen[J]. Appl. Catal. B, 2018,221:510-520. doi: 10.1016/j.apcatb.2017.09.055

    44. [44]

      Qin J Y, Zeng H P. Photocatalysts Fabricated by Depositing Plasmonic Ag Nanoparticles on Carbon Quantum Dots/Graphitic Carbon Nitride for Broad Spectrum Photocatalytic Hydrogen Generation[J]. Appl. Catal. B, 2017,209:161-173. doi: 10.1016/j.apcatb.2017.03.005

  • 加载中
    1. [1]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    4. [4]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    5. [5]

      Chengcheng Si Linshan Chai Huiyuan Liu Liye Sun Shijian Cheng Hailing Li Wenyun Wang Fang Liu Qing Feng Min Liu . Harry Potter China Tour Themed Innovative Science Popularization Experiment: Chemistry Magic Meets the Real World at Wuhan Station. University Chemistry, 2024, 39(9): 283-287. doi: 10.12461/PKU.DXHX202401069

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

Metrics
  • PDF Downloads(2)
  • Abstract views(1079)
  • HTML views(193)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return