Citation: Han XU, Zhao-Rui PAN, Rong JIANG. Syntheses, Crystal Structures and Properties of Coordination Polymers Based on 4, 4'-Bis(imidazol-l-yl)-phenyl Sulphone or 4, 4'-Bis(imidazol-l-yl)diphenyl Thioether[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1133-1145. doi: 10.11862/CJIC.2022.111 shu

Syntheses, Crystal Structures and Properties of Coordination Polymers Based on 4, 4'-Bis(imidazol-l-yl)-phenyl Sulphone or 4, 4'-Bis(imidazol-l-yl)diphenyl Thioether

  • Corresponding author: Zhao-Rui PAN, pzr_2006@163.com
  • Received Date: 8 December 2021
    Revised Date: 1 April 2022

Figures(16)

  • Three new coordination polymers based on V-shaped ligands, namely {[Cd(BIDPS)(PA)(H2O)]·CH3OH}n (1), {[Zn(BIDPS)(p-bdc)]·H2O}n (2) and [Mn(BIDPT)(NBA)]n (3) (BIDPS=4, 4' -bis(imidazol-l-yl)-phenyl sulphone, H2PA=pamoic acid, p - H2bdc= p - phthalic acid, BIDPT=4, 4' - bis(imidazol - l - yl)diphenyl thioether, H2NBA=4, 4' - azanediyl dibenzoic acid) have been hydrothermally synthesized and structurally characterized. Compounds 1 and 2 feature an undulate 2D layer structure. Compound 1 exhibits a rare 2D→3D inclined polycatenated structure, while compound 2 is further joined by intermolecular hydrogen bondings to form a 3D network. Compound 3 displays a 3-connected hexagonal layer hcb topology (honeycomb network) and is further assembled into a 3D network via C—H … π interaction. Compounds 1 and 2 showed excellent water stability and fluorescence, which were further con-firmed as bifunctional fluorescent sensors for Fe3+ and Cr2O72- with high selectivity, sensitivity, and anti-interference ability in the water. The mechanisms of fluorescence quenching were also studied in detail. CCDC: 1919698, 1; 2085947, 2; 2117923, 3.
  • 加载中
    1. [1]

      Xu H, Pan Z R. A Phenyl Sulfide Functionalized Luminescent Sensors for Efficient Fe3+ and Cr2O72- Ions Detection[J]. Chin. J. Struct. Chem., 2019,38(12):2121-2128.

    2. [2]

      Gai S, Fan R Q, Zhang J, Sun J K, Li P X, Geng Z Q, Jiang X, Dong Y Y, Wang J Q, Yang Y L. Structural Design of Low Toxicity Metal-organic Frameworks for Multifunction Detection of Organic and Inorganic Contaminants from Water[J]. Inorg. Chem., 2021,60(14):10387-10397. doi: 10.1021/acs.inorgchem.1c00936

    3. [3]

      Yang X, Ma L F, Yan D. Facile Synthesis of 1D Organic-Inorganic Perovskite Micro-belts with High Water Stability for Sensing and Photonic Application[J]. Chem. Sci., 2019,10:4567-4572. doi: 10.1039/C9SC00162J

    4. [4]

      Gogoi C, Yousufuddin M, Biswas S. A New 3D Luminescent Zn(Ⅱ)-Organic Framework Containing a Quinoline-2, 6-dicarboxylate Linker for the Highly Selective of Fe(Ⅲ) Ions[J]. Dalton Trans., 2019,48:1766-1773. doi: 10.1039/C8DT04252G

    5. [5]

      Lustig W P, Mukherjee S, Rudd N D, Desai A V, Li J, Ghosh S K. Metal-Organic Frameworks: Functional Luminescent and Photonic Materials for Sensing Applications[J]. Chem. Soc. Rev., 2017,46:3242-3285. doi: 10.1039/C6CS00930A

    6. [6]

      Tao Y F, Zhang P, Liu J N, Chen X D, Guo X L, Jin H Q, Chai J, Wang L, Fan Y. Multi-responsive Luminescent Sensor Based on Three-Dimensional Lanthanide Metal-Organic Framework[J]. New J. Chem., 2018,42:19485-19493. doi: 10.1039/C8NJ04601H

    7. [7]

      Zhitkovich A. Importance of Chromium-DNA Adducts in Mutagenicity and Toxicity of Chromium(Ⅵ)[J]. Chem. Res. Toxicol., 2005,18(3):3-11.

    8. [8]

      Jennifer S J, Jana A K. Metal-Organic Framework Membranes: From Synthesis to Separation Application[J]. Chem. Soc. Rev., 2014,43:6116-6140. doi: 10.1039/C4CS00159A

    9. [9]

      Li H B, Ji Z Y, Chen C, Di Z Y, Liu Y S, Wu M Y. A Microporous Metal-Organic Framework for Efficient C2H2/CO2 and C2H6/CH4 Separation[J]. Cryst. Growth Des., 2021,21(4):2277-2282. doi: 10.1021/acs.cgd.0c01701

    10. [10]

      He H M, Zhang D Y, Guo F, Sun F X, Zhang Q, Zhao H J, Zheng H G. A Versatile Microporous Zinc(Ⅱ) Metal-Organic Framework for Selective Gas Adsorption, Cooperative Catalysis, and Luminescent Sensing[J]. Inorg. Chem., 2018,57(12):7314-7320. doi: 10.1021/acs.inorgchem.8b00938

    11. [11]

      Wang X Q, Ma X H, Feng D D, Tang J, Wu D, Yang J, Jiao J J. Four Novel Lanthanide(Ⅲ) Metal-Organic Framework: Tunable Light Emission and Multiresponsive Luminescence Sensors for Vitamin B6 and Pesticides[J]. Cryst. Growth Des., 2021,21(4):2889-2897.

    12. [12]

      Zhang X M, Wang Y Q, Song Y, Gao E Q. Synthesis, Structure, and Magnetism of Copper(Ⅱ) and Manganese(Ⅱ) Coordination Polymers with Azide and Pyridylbenzoates[J]. Inorg. Chem., 2011,50(15):7284-7294. doi: 10.1021/ic2008842

    13. [13]

      Parmar B, Rachuri Y, Bisht K K, Laiya R, Suresh E. Mechanochemical and Conventional Synthesis of Zn(Ⅱ)/Cd(Ⅱ) Luminescent Coordination Polymers: Dual Sensing Probe for Selective Detection Chromate Anions and TNP in Aqueous Phase[J]. Inorg. Chem., 2017,56(5):2627-2638. doi: 10.1021/acs.inorgchem.6b02810

    14. [14]

      Srivastava S, Gupta B K, Gupta R. Lanthanide-Based Coordination Polymers of the Size-Selective Detection of Nitroaromatics[J]. Cryst. Growth Des., 2017,17(7):3907-3916. doi: 10.1021/acs.cgd.7b00536

    15. [15]

      Zhang Z, Fang Q H, Zhuang Z Y, Han Y, Li L Y, Yu Y. Europium Activated Aluminum Organic Frameworks for Highly Selective and Sensitive Detection of Fe3+ and Cr(Ⅵ) in Aqueous Solution[J]. Chin. J. Struct. Chem., 2020,39(11):1958-1964.

    16. [16]

      Zhai L J, Jiao C X, Liang J F, Zhang J, Niu X Y, Hu T P, Niu Y L. Two New Coordination Polymers Based on H4BIPA-TC: Syntheses and Fluorescence Sensing for Nitroaromatic Compounds and Fe3+ Ion[J]. Chin. J. Struct. Chem., 2020,39(4):772-782.

    17. [17]

      Hu J S, Shang Y J, Yao X Q, Qin L, Li Y Z, Guo Z J, Zheng H G, Xue Z L. Syntheses, Structure, and Photochemical Properties of Six New Metal-Organic Frameworks Based on Aromatic Dicarboxylate Acids and V-Shaped Imidazole Ligands[J]. Cryst. Growth Des., 2010,10(9):4135-4142. doi: 10.1021/cg1008208

    18. [18]

      Liu B L, Ge Z W, Guo J H, Li C P, Jing C. A 2D Cd Coordination Polymer Constructed from 4-Amino-3, 5-bis(2-pyridyl)-1, 2, 4-triazole and Tetrabromoterephthalic Acid: Synthesis, Crystal Structure, and Properties[J]. Chin. J. Struct. Chem., 2015,34(7):1128-1134.

    19. [19]

      Fonari M S, Kravtsov V C, Bold V, Lucenti E, Cariati E, Marinotto D, Forni A. Structural Landscape of Zn(Ⅱ) and Cd(Ⅱ) Coordination Compounds with Two Isomeric Triimidazole Luminophores: Impact of Crystal Packing Patterns on Emission Properties[J]. Cryst. Growth Des., 2021,21(7):4184-4200. doi: 10.1021/acs.cgd.1c00459

    20. [20]

      Naskar K, Dey A, Maity S, Ray P P, Sinha C. Charge Transportation in Zn(Ⅱ)/Cd(Ⅱ)-Based 2D MOFs of 5-Nitro-isophthalate with Isonicotinic Hydrazide[J]. Cryst. Growth Des., 2021,21(9):4847-4856. doi: 10.1021/acs.cgd.1c00018

    21. [21]

      LIU L, JIN P N, YANG J, SONG L X, ZHAO B, LI J K, HUANG B, ZHANG Y P, YANG X X. Structure and Fluorescence Properties of Three 1D/2D/3D Zn(Ⅱ)/Co(Ⅱ) Complexes Based on Flexible Tetracar-boxylic Acid[J]. Chinese J. Inorg. Chem., 2021,37(5):921-928.  

    22. [22]

      XU H. Syntheses, Crystal Structures and Fluorescence Properties of Two Compounds Constructed by Aromatic Carboxylates 4, 4'-Bis (imidazol-1-yl)-phenyl Sulphone[J]. Chinese J. Inorg. Chem., 2016,32(8):1481-1486.

    23. [23]

      Zhang H, Ji L Q, Song Y Z, Kong Z G, Li C, Wang X Y. Syntheses, Crystal Structures and Properties of Mn(Ⅱ) and Co(Ⅱ) Coordination Complexes Based on 1, 10-Phenanthroline Derivative[J]. Chin. J. Struct. Chem., 2021,40(3):336-342.

    24. [24]

      Li F F, Lu L P. A New Mn(Ⅱ) Coordination Polymer: Synthesis, Structure and Magnetic Property[J]. Chin. J. Struct. Chem., 2019,38(10):1814-1822.

    25. [25]

      Lin Y N, Zhang X P, Chen W J, Shi W, Cheng P. Three Cadmium Coordination Polymers with Carboxylate and Pyridine Mixed Ligands: Luminescent Sensors for Fe and Cr Ions in an Aqueous Medium[J]. Inorg. Chem., 2017,56(19):11768-11778. doi: 10.1021/acs.inorgchem.7b01790

    26. [26]

      Yu H H, Fan M Y, Liu Q, Su Z M, Li X, Pan Q Q, Hu X L. Two Highly Water-Stable Imidazole-Based Ln-MOFs for Sensing Fe3+, Cr2O72-/CrO42- in a Water Environment[J]. Inorg. Chem., 2020,59(3):2005-2010. doi: 10.1021/acs.inorgchem.9b03364

    27. [27]

      Wang S N, Yun R R, Peng Y Q, Zhang Q F, Lu J, Dou J M, Bai J F, Li D C, Wang D Q. A Serious of Four-Connected Entangled Metal-Organic Frameworks Assembled from Pamoic Acid and Pyridine-Containing Ligands: Interpenetrating, Self-Penetrating, and Supra-molecular Isomerism[J]. Cryst. Growth Des., 2012,12(1):479-492.

    28. [28]

      Chu J F, Wang S Y, Liu J C, Hu H B, Xu Q X. Two Cadmium Coordination Polymers Based on Pamoic Acid and Different Polydentate N-Donor Ligands: Syntheses, Crystal Structures, and Fluorescence Properties[J]. Z. Anorg. Allg. Chem., 2020,646(21):420-425.

    29. [29]

      Rath B B, Vittal J J. Water Stable Zn(Ⅱ) Metal-Organic Framework as a Selective and Sensitive Luminescent Probe for Fe(Ⅲ) and Chromate Ions[J]. Inorg. Chem., 2020,59(13):8818-8826. doi: 10.1021/acs.inorgchem.0c00545

    30. [30]

      Ge F Y, Sun G H, Meng L, Ren S S, Zheng H G. Four New Luminescent Metal-Organic Frameworks as Multifunctional Sensors for Detecting Fe3+, Cr2O72- and Nitromethane[J]. Cryst. Growth Des., 2020,20(3):1898-1904. doi: 10.1021/acs.cgd.9b01593

    31. [31]

      Zhai Z W, Yang S H, Cao M, Li L K, Du C X, Zang S Q. Rational Design of Three Two-Fold Interpenetrated Metal-Organic Frameworks: Luminescent Zn/Cd-Metal-Organic Frameworks for Detection of 2, 4, 6-Trinitrophenol and Nitrofurazone in the Aqueous Phase[J]. Cryst. Growth Des., 2018,18(11):7173-7182. doi: 10.1021/acs.cgd.8b01335

    32. [32]

      Xue Z Z, Guan Q W, Xu L, Meng X D, Pan J. A Zn(Ⅱ)-Based Coordination Polymer Featuring Selective Detection of Fe3+ and Efficient Capture of Anionic Dyes[J]. Cryst. Growth Des., 2020,20(11):7477-7483. doi: 10.1021/acs.cgd.0c01151

    33. [33]

      Wang Z J, Ge F Y, Sun G H, Zheng H G. Two MOFs as Dual-Responsive Photoluminescence Sensors for Metal and Inorganic Ions Detection[J]. Dalton Trans., 2018,47:8257-8263. doi: 10.1039/C8DT01363B

    34. [34]

      Wu X X, Fu H R, Han M L, Zhou Z, Ma L F. Tetraphenylethylene Immobilized Metal-Organic Frameworks: Highly Sensitive Fluorescent Sensor for the Detection of Cr2O72- and Nitroaromatic Explosives[J]. Cryst. Growth Des., 2017,17(11):6041-6048. doi: 10.1021/acs.cgd.7b01155

    35. [35]

      He H M, Zhu Q Q, Li C P, Du M. Design of a Highly-Stable Pillar-Layer Zinc(Ⅱ) Porous Framework for Rapid, Reversible, and Multi-Responsive Luminescent Sensor in Water[J]. Cryst. Growth Des., 2019,19(2):694-703. doi: 10.1021/acs.cgd.8b01271

    36. [36]

      Chen S G, Shi Z Z, Qin L, Jia H L, Zheng H G. Two New Luminescent Cd(Ⅱ)-Metal-Organic Frameworks as Bifunctional Chemosensors for Detection of Cations Fe3+, Anions CrO42-, and Cr2O72- in Aqueous Solution[J]. Cryst. Growth Des., 2017,17(1):67-72. doi: 10.1021/acs.cgd.6b01197

  • 加载中
    1. [1]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    2. [2]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    3. [3]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    4. [4]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    5. [5]

      Weizhong LINGXiangyun CHENWenjing LIUYingkai HUANGYu LI . Syntheses, crystal structures, and catalytic properties of three zinc(Ⅱ), cobalt(Ⅱ) and nickel(Ⅱ) coordination polymers constructed from 5-(4-carboxyphenoxy)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1803-1810. doi: 10.11862/CJIC.20240068

    6. [6]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    7. [7]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    8. [8]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    9. [9]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    10. [10]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    11. [11]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    14. [14]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Zhiqiang LiuQiang GaoWei ShenMeifeng XuYunxin LiWeilin HouHai-Wei ShiYaozuo YuanErwin AdamsHian Kee LeeSheng Tang . Removal and fluorescence detection of antibiotics from wastewater by layered double oxides/metal-organic frameworks with different topological configurations. Chinese Chemical Letters, 2024, 35(8): 109338-. doi: 10.1016/j.cclet.2023.109338

    20. [20]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

Metrics
  • PDF Downloads(4)
  • Abstract views(561)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return