Citation: Yue-Jiao JIA, Xiao-Yu LIANG, Ming HU. A Water Stable Luminescent Zn-Complex Sensor for Detection of PO43- Ion, Fe3+ Ion, and Nitroaromatic Explosives[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1146-1158. doi: 10.11862/CJIC.2022.108 shu

A Water Stable Luminescent Zn-Complex Sensor for Detection of PO43- Ion, Fe3+ Ion, and Nitroaromatic Explosives

  • Corresponding author: Ming HU, hm988@126.com
  • Received Date: 11 December 2021
    Revised Date: 31 March 2022

Figures(7)

  • A luminescent Zn-complex based on the 3-(2, 4-dicarboxylphenyl)-6-carboxylpyridine (H3dpcp), namely [Zn(H2dpcp)2(H2O)2]·H2O (1), was successfully fabricated by the solvothermal process. Complex 1 features a mono-nuclear butterfly-like structure, which further extends to the 3D supramolecular architecture via ππ interactions. It is found that complex 1 exhibited excellent luminescent stability in a pH range of 1-10 in an aqueous solution. It should be noted that complex 1 can not only detect PO43- ion based on the turn-on effect with high selectivity and recyclability but also serve as a remarkably selective sensing material with the fluorescence quenching for Fe3+ ion. The examination of nitroaromatic compounds demonstrated that complex 1 also behaved as a functional probe with high selectivity, sensitivity, and the low detection limit of 2, 4, 6-trinitrophenol (TNP). Furthermore, the luminescent sensing mechanisms for the above analytes were also investigated in detail. CCDC: 2010615.
  • 加载中
    1. [1]

      Mainstone C P, Parr W. Phosphorus in Rivers-Ecology and Management[J]. Sci. Total Environ., 2002,282:25-47.

    2. [2]

      Withers P J A, Jarvie H P. Delivery and Cycling of Phosphorus in Rivers: A Review[J]. Sci Total Environ., 2008,400:379-395. doi: 10.1016/j.scitotenv.2008.08.002

    3. [3]

      Lin K Y A, Chen S Y, Jochems A P. Zirconium-Based Metal Organic Frameworks: Highly Selective Adsorbents for Removal of Phosphate from Water and Urine[J]. Mater. Chem. Phys., 2015,160:168-176. doi: 10.1016/j.matchemphys.2015.04.021

    4. [4]

      Jia X L, Chen D J, Liu B, Hai L, Zhang R, Zheng Y D. Highly Selective and Sensitive Phosphate Anion Sensors Based on AlGaN/GaN High Electron Mobility Transistors Functionalized by Ion Imprinted Polymer[J]. Sci. Rep., 2016,627728. doi: 10.1038/srep27728

    5. [5]

      Farahani Y D, Safarifard V. Highly Selective Detection of Fe3+, Cd2+ and CH2Cl2 Based on a Fluorescent Zn-MOF with Azine-Decorated Pores[J]. J. Solid State Chem., 2019,275:131-140. doi: 10.1016/j.jssc.2019.04.018

    6. [6]

      Li L N, Shen S S, Ai W P, Song S Y, Bai Y, Liu H W. Facilely Synthe-sized Eu3+ Post-functionalized UiO-66-Type Metal-Organic Framework for Rapid and Highly Selective Detection of Fe3+ in Aqueous Solution[J]. Sens. Actuator B-Chem., 2018,267:542-548. doi: 10.1016/j.snb.2018.04.064

    7. [7]

      Hu X R, Cai X Y, Ma R S, Fu W W, Zhang C J, Du X J. Iron-Load Exacerbates the Severity of Atherosclerosis via Inducing Inflammation and Enhancing the Glycolysis in Macrophages[J]. J. Cell. Physiol., 2019,234:18792-18800. doi: 10.1002/jcp.28518

    8. [8]

      Gao E J, Liu D S, Xing J L, Feng Y H, Su J Q, Liu J X, Zhao H W, Wang N, Jia Z L, Zhang X Y, Fedin V P, Zhu M C. A Recyclable Bi-functional Luminescent Zinc(Ⅱ) Metal-Organic Framework as Highly Selective and Sensitive Sensing Probe for Nitroaromatic Explosives and Fe3+ Ions[J]. Appl. Organomet. Chem., 2019,33e5109.

    9. [9]

      Zhang Y Q, Blatov V A, Zheng T R, Yang C H, Qian L L, Li K, Li B L, Wu B. A Luminescent Zinc(Ⅱ) Coordination Polymer with Unusual (3, 4, 4)-Coordinated Self-Catenated 3D Network for Selective Detection of Nitroaromatics and Ferric and Chromate Ions: A Versatile Luminescent Sensor[J]. Dalton Trans., 2018,47:6189-6198. doi: 10.1039/C7DT04682K

    10. [10]

      Cai H, Xu L L, Lai H Y, Liu J Y, Ng S W, Li D. A Highly Emissive and Stable Zinc(Ⅱ) Metal-Organic Framework as a Host-guest Chemo-palette for Approaching White-Light-Emission[J]. Chem. Commun., 2017,53:7917-7920. doi: 10.1039/C7CC03350H

    11. [11]

      Li Y W, Yan H, Hu T L, Ma H Y, Li D C, Wang S N, Yao Q X, Dou J M, Xu J, Bu X H. Two Microporous Fe-Based MOFs with Multiple Active Sites for Selective Gas Adsorption[J]. Chem. Commun., 2017,53:2394-2397. doi: 10.1039/C6CC09923H

    12. [12]

      Wang J X, Li J, Wang Y N, Gao M X, Zhang X M, Yang P Y. Development of Versatile Metal-Organic Framework Functionalized Magnetic Graphene Core-Shell Biocomposite for Highly Specific Recognition of Glycopeptides[J]. ACS Appl. Mater. Interfaces, 2016,8:27482-27489. doi: 10.1021/acsami.6b08218

    13. [13]

      Liu S J, Cao C, Yao S L, Zheng T F, Wang Z X, Liu C, Liao J S, Chen J L, Li Y W, Wen H R. Temperature- and Vapor-Induced Reversible Single-Crystal-to-Single-Crystal Transformations of Three 2D/3D Gd-Organic Frameworks Exhibiting Significant Magnetocaloric Effects[J]. Dalton Trans., 2016,46:64-70.

    14. [14]

      Jiao L, Wang Y, Jiang H L, Xu Q. Metal-Organic Frameworks as Platforms for Catalytic Applications[J]. Adv. Mater., 2018,30e1703663. doi: 10.1002/adma.201703663

    15. [15]

      Zhao X X, Feng J R, Liu J W, Lu J, Shi W, Yang G M, Wang G C, Feng P Y, Cheng P. Metal-Organic Framework-Derived ZnO/ZnS Heteronanostructures for Efficient Visible-Light-Driven Photocatalytic Hydrogen Production[J]. Adv. Sci., 2018,51700590. doi: 10.1002/advs.201700590

    16. [16]

      Xiao J D, Jiang H L. Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis[J]. Acc. Chem. Res., 2019,52:356-366. doi: 10.1021/acs.accounts.8b00521

    17. [17]

      Eliseeva S V, Bunzli J C G. Lanthanide Luminescence for Functional Materials and Bio-sciences[J]. Chem. Soc. Rev., 2010,39:189-227. doi: 10.1039/B905604C

    18. [18]

      Hou L L, Song Y H, Xiao Y J, Wu R, Wang L. Ratiometric Fluorescence Detection of Dipicolinic Acid Based on Microporous Ln/Melamine-Terephthaladehyde Schiff Base Networks Complex[J]. Talanta, 2020,209120534. doi: 10.1016/j.talanta.2019.120534

    19. [19]

      He T, Zhang Y Z, Kong X J, Yu J M, Lv X L, Wu Y F, Guo Z J, Li J R. Zr(Ⅳ)-Based Metal-Organic Framework with T-Shaped Ligand: Unique Structure, High Stability, Selective Detection, and Rapid Adsorption of Cr2O72- in Water[J]. ACS Appl. Mater. Interfaces, 2018,10:16650-16659. doi: 10.1021/acsami.8b03987

    20. [20]

      Wu J X, Yan B. Eu(Ⅲ)-Functionalized In-MOF (In(OH)bpydc) as Fluorescent Probe for Highly Selectively Sensing Organic Small Molecules and Anions Especially for CHCl3 and MnO4-[J]. J. Colloid Interface Sci., 2017,504:197-205. doi: 10.1016/j.jcis.2017.05.054

    21. [21]

      Zhang Q, Wang C F, Lv Y K. Luminescent Switch Sensors for the Detection of Biomolecules Based on Metal-Organic Frameworks[J]. Analyst, 2018,143:4221-4229. doi: 10.1039/C8AN00816G

    22. [22]

      Gao Y X, Yu G, Liu K, Wang B. Luminescent Mixed-Crystal Ln-MOF Thin Film for the Recognition and Detection of Pharmaceuticals[J]. Sens. Actuator B-Chem., 2018,257:931-935. doi: 10.1016/j.snb.2017.10.180

    23. [23]

      Zhang Q S, Wang J, Kirillov A M, Dou W, Xu C, Xu C L, Yang L Z, Fang R, Liu W S. Multifunctional Ln-MOF Luminescent Probe for Efficient Sensing of Fe3+, Ce3+, and Acetone[J]. ACS Appl. Mater. Interfaces, 2018,10:23976-23986. doi: 10.1021/acsami.8b06103

    24. [24]

      Li Y K, Wei Z H, Zhang Y, Guo Z F, Chen D S, Jia P Y, Chen P, Xing H Z. Multifunctional Ln-MOF Dual-Emitting EY@Zr-MOF Composite as Self-Calibrating Luminescent Sensor for Selective Detection of Inorganic Ions and Nitroaromatics[J]. ACS Sustainable Chem. Eng., 2019,7:6196-6203. doi: 10.1021/acssuschemeng.8b06500

    25. [25]

      Zhao J, Qu X L, Wang J M, Yan B. Photophysical Tuning of Viologen-Based Metal-Organic Framework Hybrids via Anion Exchange and Chemical Sensing on Persulfate (S2O82-)[J]. Ind. Eng. Chem. Res., 2019,58:18533-18539. doi: 10.1021/acs.iecr.9b04049

    26. [26]

      Cao Z, Chen L, Jiang F L, Zhou K, Yu M X, Jing T, Li S C, Li Z J, Hong M C. Incorporating Three Chiral Channels into an In-MOF for Excellent Gas Absorption and Preliminary Cu2+ Ion Detection[J]. Cryst. Growth Des., 2019,19:3860-3868. doi: 10.1021/acs.cgd.9b00295

    27. [27]

      Zhang Y, Yan B. A Portable Self-Calibrating Logic Detector for Gradient Detection of Formaldehyde Based on Luminescent Metal Organic Frameworks[J]. J. Mater. Chem. C, 2019,7:5652-5657. doi: 10.1039/C9TC01288E

    28. [28]

      Li S D, Lu L P, Zhu M L, Yuan C X, Feng S S. A Bifunctional Chemosensor for Detection of Volatile Ketone or Hexavalent Chromate Anions in Aqueous Solution Based on a Cd(Ⅱ) Metal-Organic Framework[J]. Sens. Actuator B-Chem., 2018,258:970-980. doi: 10.1016/j.snb.2017.11.142

    29. [29]

      Yao W Q, Guo H, Liu H, Li Q, Xue R, Wu N, Li L, Wang M Y, Yang W. Simultaneous Electrochemical Determination of Acetaminophen and Dopamine Based on Metal-Organic Framework/Multiwalled Carbon Nanotubes-Au@Ag Nanocomposites[J]. J. Electrochem. Soc., 2019,166:B1258-B1267. doi: 10.1149/2.0101914jes

    30. [30]

      Rawool C R, Srivastava A K. A Dual Template Imprinted Polymer Modified Electrochemical Sensor Based on Cu Metal Organic Framework/Mesoporous Carbon for Highly Sensitive and Selective Recognition of Rifampicin and Isoniazid[J]. Sens. Actuator B-Chem., 2019,288:493-506. doi: 10.1016/j.snb.2019.03.032

    31. [31]

      Zhao D, Rao X T, Yu J C, Cui Y J, Yang Y, Qian G D. Design and Synthesis of an MOF Thermometer with High Sensitivity in the Physiological Temperature Range[J]. Inorg. Chem., 2015,54:11193-11199. doi: 10.1021/acs.inorgchem.5b01623

    32. [32]

      Zhou Z Q, Li M X, Wang L Y, He X, Chi T, Wang Z X. Antiferro-magnetic Copper(Ⅱ) Metal-Organic Framework Based Quartz Crystal Microbalance Sensor for Humidity[J]. Cryst. Growth Des., 2017,17:6719-6724. doi: 10.1021/acs.cgd.7b01318

    33. [33]

      Sun Y, Zhang N, Guan Q L, Liu C H, Li B, Zhang K Y, Li G H, Xing Y H, Bai F Y, Sun L X. Sensing of Fe3+ and Cr2O72- in Water and White Light: Synthesis, Characterization, and Fluorescence Properties of a Crystalline Bismuth-1, 3, 5-Benzenetricarboxylic Acid Framework[J]. Cryst. Growth Des., 2019,19:7217-7229. doi: 10.1021/acs.cgd.9b01098

    34. [34]

      Wang X Q, Feng D D, Tang J, Zhao Y D, Li J, Yang J, Kim C K, Su F. A Water-Stable Zinc(Ⅱ)-Organic Framework as a Multiresponsive Luminescent Sensor for Toxic Heavy Metal Cations, Oxyanions and Organochlorine Pesticides in Aqueous Solution[J]. Dalton Trans., 2019,48:16776-16785. doi: 10.1039/C9DT03195B

    35. [35]

      Shi X X, Qu X J, Chai J, Tong C X, Fan Y, Wang L. Stable Coordination Polymers with Linear Dependence Color Tuning and Luminescent Properties for Detection of Metal Ions and Explosives[J]. Dyes Pigment., 2019,170107583. doi: 10.1016/j.dyepig.2019.107583

    36. [36]

      Wu K, Hu J S, Cheng X F, Li J X, Zhou C H. A Superior Luminescent Metal-Organic Framework Sensor for Sensing Trace Al3+ and Picric Acid via Disparate Charge Transfer Behaviors[J]. J. Lumin., 2020,219116908. doi: 10.1016/j.jlumin.2019.116908

    37. [37]

      Wu K, Hu J S, Shi S N, Li J X, Cheng X F. A Thermal Stable Pincer-MOF with High Selective and Sensitive Nitro Explosive TNP, Metal Ion Fe3+ and pH Sensing in Aqueous Solution[J]. Dyes Pigment., 2020,173107993. doi: 10.1016/j.dyepig.2019.107993

    38. [38]

      Zhao D, Wan X Y, Song H J, Hao L Y, Su Y Y, Lv Y. Metal-Organic Frameworks (MOFs) Combined with ZnO Quantum Dots as a Fluorescent Sensing Platform for Phosphate[J]. Sens. Actuator B-Chem., 2014,197:50-57. doi: 10.1016/j.snb.2014.02.070

    39. [39]

      Gao N, Huang J, Wang L Y, Feng J Y, Huang P C, Wu F Y. Ratiometric Fluorescence Detection of Phosphate in Human Serum with a Metal-Organic Frameworks-Based Nanocomposite and Its Immobilized Agarose Hydrogels[J]. Appl. Surf. Sci., 2018,459:686-692. doi: 10.1016/j.apsusc.2018.08.092

    40. [40]

      Das A, Das S, Trivedi V, Biswas S. A Dual Functional MOF-Based Fluorescent Sensor for Intracellular Phosphate and Extracellular 4-Nitrobenzaldehyde[J]. Dalton Trans., 2019,48:1332-1343. doi: 10.1039/C8DT03964J

    41. [41]

      Zhang X L, Zhan Z Y, Liang X Y, Chen C, Liu X L, Jia Y J, Hu M. Lanthanide-MOFs Constructed from Mixed Dicarboxylate Ligands as Selective Multi-responsive Luminescent Sensors[J]. Dalton Trans., 2018,47:3272-3282. doi: 10.1039/C7DT02966G

    42. [42]

      Zhan Z Y, Liang X Y, Zhang X L, Jia Y J, Hu M. A Water-Stable Europium-MOF as a Multifunctional Luminescent Sensor for Some Trivalent Metal Ions (Fe3+, Cr3+, Al3+), PO43- Ions, and Nitroaromatic Explosives[J]. Dalton Trans., 2019,48:1786-1794. doi: 10.1039/C8DT04653K

    43. [43]

      Liang X Y, Zhan Z Y, Jia Y J, Hu M. A Highly Selective Multifunctional Zn-MOF Probe for Sensing of Cr(Ⅲ), Cr(Ⅵ) Ions and TNP Molecule[J]. Appl. Organomet. Chem., 2019,33e4988.

    44. [44]

      Wang Y N, Zhu W C, Huo Q S, Yu J H, Xu J Q. A New Three-Dimensional Zn2+ Coordination Polymer Constructed from Oxalate and 1, 2, 4-Triazolate[J]. Spectrochim. Acta A, 2016,161:138-143. doi: 10.1016/j.saa.2016.02.020

    45. [45]

      Pankajakshan A, Kuznetsov D, Mandal S. Ultrasensitive Detection of Hg(Ⅱ) Ions in Aqueous Medium Using Zinc-Based Metal-Organic Framework[J]. Inorg. Chem., 2019,58:1377-1381. doi: 10.1021/acs.inorgchem.8b02898

    46. [46]

      Das P, Mandal S K. A Highly Emissive Fluorescent Zn-MOF: Molecular Decoding Strategies for Solvents and Trace Detection of Dunnite in Water[J]. J. Mater. Chem. A, 2018,6:21274-21279. doi: 10.1039/C8TA08546C

    47. [47]

      Gai Y L, Jiang F L, Chen L, Bu Y, Wu M Y, Zhou K, Pan J, Hong M C. A Series of Novel Zinc(Ⅱ) Entangled Coordination Polymers Based on Carboxyphenyl-Terpyridine Ligands[J]. Dalton Trans., 2013,42:9954-9965. doi: 10.1039/c3dt50532d

    48. [48]

      Guo D D, Zhu L N, Meng X X, Deng Z P, Huo L H, Gao S. Structural Variation from Linear, Layer to 3D Framework: Syntheses, Structures and Luminescence[J]. Appl. Organomet. Chem., 2019,33e5056.

    49. [49]

      Yu M, Zuo C S, Zhang N. An Experimental and Computational Study on Naphthylideneimine Based pH Sensitive Fluorescence Probe for Zinc[J]. Spectrochim. Acta A, 2020,224117389. doi: 10.1016/j.saa.2019.117389

    50. [50]

      Ambrosi G, Fanelli M, Paoli P, Formica M, Paderni D, Rossi P, Micheloni M, Giorgi L, Fusi V. Zn(Ⅱ) Detection and Biological Activity of a Macrocycle Containing a Bis(oxadiazole)pyridine Derivative as Fluorophore[J]. Dalton Trans., 2020,49:7496-7506. doi: 10.1039/C9DT03910D

    51. [51]

      Qu S M, Li Z, Jia Q. Detection of Purine Metabolite Uric Acid with Picolinic-Acid-Functionalized Metal-Organic Frameworks[J]. ACS Appl. Mater. Interfaces, 2019,11:34196-34202. doi: 10.1021/acsami.9b07442

    52. [52]

      Ding H, Wei J S, Xiong H M. Nitrogen and Sulfur Co-doped Carbon Dots with Strong Blue Luminescence[J]. Nanoscale, 2014,6:13817-13823. doi: 10.1039/C4NR04267K

    53. [53]

      Ming F L, Hou J Z, Huo D Q, Zhou J, Yang M, Shen C H, Zhang S Y, Hou C J. Copper-Based Metal-Organic Framework Nanoparticles for Sensitive Fluorescence Detection of Ferric Ions[J]. Anal. Methods, 2019,11:4382-4389. doi: 10.1039/C9AY01093A

    54. [54]

      Ding H, Yu S B, Wei J S, Xiong H M. Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism[J]. ACS Nano, 2016,10:484-491. doi: 10.1021/acsnano.5b05406

    55. [55]

      Onyiriuka E C. Zinc Phosphate Glass Surfaces Studied by XPS[J]. J. Non-Cryst. Solids, 1993,163:268-273. doi: 10.1016/0022-3093(93)91304-L

    56. [56]

      Asha K S, Bhattacharjee R, Mandal S. Complete Transmetalation in a Metal-Organic Framework by Metal Ion Metathesis in a Single Crystal for Selective Sensing of Phosphate Ions in Aqueous Media[J]. Angew. Chem. Int. Ed., 2016,55:11528-11532. doi: 10.1002/anie.201606185

    57. [57]

      Besheli M E, Rahimi R, Farahani Y D, Safarifard V. A Porous Ni-Based Metal-Organic Framework as a Selective Luminescent Probe to Fe3+ Metal Ion and MeOH[J]. Inorg. Chim. Acta, 2019,495118956. doi: 10.1016/j.ica.2019.118956

    58. [58]

      Hu J S, Cheng T T, Dong S J, Zhou C H, Huang X H, Zhang L. Multi-functional Luminescent Cd(Ⅱ)-Based Metal-Organic Framework Material for Highly Selective and Sensitive Sensing 2, 4, 6-Trinitro-phenol (TNP) and Fe3+ Cation[J]. Microporous Mesoporous Mater., 2018,272:177-183. doi: 10.1016/j.micromeso.2018.06.013

    59. [59]

      Xu H, Gao J K, Qian X F, Wang J P, He H J, Cui Y J, Yang Y, Wang Z Y, Qian G D. Metal-Organic Framework Nanosheets for Fast-Response and Highly Sensitive Luminescent Sensing of Fe3+[J]. J. Mater. Chem. A, 2016,4:10900-10905. doi: 10.1039/C6TA03065C

    60. [60]

      Wang J, Wu J, Lu L, Xu H J, Trivedi M, Kumar A, Liu J Q, Zheng M B. A New 3D 10-Connected Cd(Ⅱ) Based MOF with Mixed Ligands: A Dual Photoluminescent Sensor for Nitroaroamatics and Ferric Ion[J]. Front. Chem., 2019,7244. doi: 10.3389/fchem.2019.00244

    61. [61]

      Gogoi C, Biswas S. A New Quinoline Based Luminescent Zr(Ⅳ) Metal-Organic Framework for the Ultrasensitive Recognition of 4-Nitrophenol and Fe(Ⅲ) Ions[J]. Dalton Trans., 2018,47:14696-14705. doi: 10.1039/C8DT03058H

    62. [62]

      Hussain S, Malik A H, Afroz M A, Iyer P K. Ultrasensitive Detection of Nitroexplosive-Picric Acid via a Conjugated Polyelectrolyte in Aqueous Media and Solid Support[J]. Chem. Commun., 2015,51:7207-7210. doi: 10.1039/C5CC02194D

    63. [63]

      Hou B L, Tian D, Liu J, Dong L Z, Li S L, Li D S, Lan Y Q. A Water-Stable Metal-Organic Framework for Highly Sensitive and Selective Sensing of Fe3+ Ion[J]. Inorg. Chem., 2016,55:10580-10586. doi: 10.1021/acs.inorgchem.6b01809

    64. [64]

      Gui B, Meng Y, Xie Y, Tian J W, Yu G, Zeng W X, Zhang G X, Gong S L, Yang C L, Zhang D Q, Wang C. Tuning the Photoinduced Electron Transfer in a Zr-MOF: Toward Solid-State Fluorescent Molecular Switch and Turn-On Sensor[J]. Adv. Mater., 2018,301802329. doi: 10.1002/adma.201802329

    65. [65]

      Cui Y J, Yue D, Huang Y K, Zhang J, Wang Z Y, Yang D R, Qian G D. Photo-Induced Electron Transfer in a Metal-Organic Framework: A New Approach towards a Highly Sensitive Luminescent Probe for Fe3+[J]. Chem. Commun., 2019,55:11231-11234. doi: 10.1039/C9CC05019A

    66. [66]

      Chen C H, Wang X S, Li L, Huang Y B, Cao R. Highly Selective Sensing of Fe3+ by an Anionic Metal-Organic Framework Containing Uncoordinated Nitrogen and Carboxylate Oxygen Sites[J]. Dalton Trans., 2018,47:3452-3458. doi: 10.1039/C8DT00088C

    67. [67]

      Arici M. Multifunctional Luminescent Coordination Polymers Based on Tricarboxylic Acid for the Detection of 2, 4-Dinitrophenol and Iron(Ⅲ) and Aluminum(Ⅲ) ions[J]. New J. Chem., 2019,43:3690-3697. doi: 10.1039/C8NJ04046J

    68. [68]

      Surya S G, Nagarkar S S, Ghosh S K, Sonar P, Rao V R. OFET Based Explosive Sensors Using Diketopyrrolopyrrole and Metal Organic Framework Composite Active Channel Material[J]. Sens. Actuator B-Chem., 2016,223:114-122. doi: 10.1016/j.snb.2015.09.076

    69. [69]

      Sharma A, Kim D, Park J H, Rakshit S, Seong J, Jeong G H, Kwon O H, Lah M S. Mechanistic Insight into the Sensing of Nitroaromatic Compounds by Metal-Organic Frameworks[J]. Comm. Chem., 2019,239. doi: 10.1038/s42004-019-0135-2

  • 加载中
    1. [1]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    2. [2]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    3. [3]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    4. [4]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    5. [5]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    6. [6]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    7. [7]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    8. [8]

      Bin FangJiaqi YangLimin WangHaoqin LiJiaying GuoJiaxin ZhangQingyuan GuoBo PengKedi LiuMiaomiao XiHua BaiLi FuLin Li . A mitochondria-targeted H2S-activatable fluorogenic probe for tracking hepatic ischemia-reperfusion injury. Chinese Chemical Letters, 2024, 35(6): 108913-. doi: 10.1016/j.cclet.2023.108913

    9. [9]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    10. [10]

      Mianying Huang Zhiguang Xu Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2023.100309

    11. [11]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    12. [12]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    13. [13]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    14. [14]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    15. [15]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    16. [16]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    17. [17]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    18. [18]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    19. [19]

      Lumin ZhengYing BaiChuan Wu . Multi-electron reaction and fast Al ion diffusion of δ-MnO2 cathode materials in rechargeable aluminum batteries via first-principle calculations. Chinese Chemical Letters, 2024, 35(4): 108589-. doi: 10.1016/j.cclet.2023.108589

    20. [20]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

Metrics
  • PDF Downloads(6)
  • Abstract views(536)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return