Citation: Shi-Hui HE, Jing ZHAO, Quan-Lin LIU. High-Efficiency and Broad-Spectrum Emitting Organic-Inorganic Metal Halide Photoluminescent Materials[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1209-1225. doi: 10.11862/CJIC.2022.107 shu

High-Efficiency and Broad-Spectrum Emitting Organic-Inorganic Metal Halide Photoluminescent Materials

  • Corresponding author: Jing ZHAO, jingzhao@ustb.edu.cn
  • Received Date: 8 December 2021
    Revised Date: 24 March 2022

Figures(11)

  • Organic-inorganic metal halides, as an emerging photoluminescent material, have received extensive attention due to their high photoluminescence quantum yield and broad-spectrum emission. This paper focuses on organic-inorganic metal halide high-efficiency photoluminescent materials, classifies the materials according to the types of metal cations, discusses their high-efficiency luminescent mechanism, and proposes methods to improve the luminous efficiency of such materials. In general, the research on such photoluminescent materials is still in its infancy, its light-emitting mechanism is still controversial, and current mainstream light-emitting mechanisms are summarized. Finally, the development prospects of organic-inorganic metal halide photoluminescent materials are prospected, aiming to further promote the application of this type of material in the field of phosphor-converted light-emitting diodes.
  • 加载中
    1. [1]

      Quan L N, Rand B P, Friend R H, Mhaisalkar S G, Lee T W, Sargent E H. Perovskites for Next-Generation Optical Sources[J]. Chem. Rev., 2019,119(12):7444-7477. doi: 10.1021/acs.chemrev.9b00107

    2. [2]

      Liu X K, Xu W, Bai S, Jin Y, Wang J, Friend R H, Gao F. Metal Halide Perovskites for Light-Emitting Diodes[J]. Nat. Mater., 2021,20(1):10-21. doi: 10.1038/s41563-020-0784-7

    3. [3]

      Yao J S, Wang J J, Yang J N, Yao H B. Modulation of Metal Halide Structural Units for Light Emission[J]. Acc. Chem. Res., 2021,54(2):441-451. doi: 10.1021/acs.accounts.0c00707

    4. [4]

      YUAN S, SHEN W S, LIAO L S. High-Efficiency Light-Emitting Diode Based on Metal Halide Perovskite Material[J]. Physics, 2021,50(6):385-392.  

    5. [5]

      Philippe B, Jacobsson T J, Correa-Baena J P, Jena N K, Banerjee A, Chakraborty S, Cappel U B, Ahuja R, Hagfeldt A, Odelius M, Rensmo H. Valence Level Character in a Mixed Perovskite Material and Determination of the Valence Band Maximum from Photoelectron Spectroscopy: Variation with Photon Energy[J]. J. Phys. Chem. C, 2017,121(48):26655-26666. doi: 10.1021/acs.jpcc.7b08948

    6. [6]

      Liu H W, Wu Z N, Gao H, Shao J R, Zou H Y, Yao D, Liu Y, Zhang H, Yang B. One-Step Preparation of Cesium Lead Halide CsPbX3(X= Cl, Br, and I) Perovskite Nanocrystals by Microwave Irradiation[J]. ACS Appl. Mater. Interfaces, 2017,9(49):42919-42927. doi: 10.1021/acsami.7b14677

    7. [7]

      Zhang F, Zhong H Z, Chen C, Wu X G, Hu X M, Huang H L, Han J B, Zou B S, Dong Y P. Brightly Luminescent and Color-Tunable Colloidal CH3NH3PbX3(X=Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology[J]. ACS Nano, 2015,9(4):4533-4542. doi: 10.1021/acsnano.5b01154

    8. [8]

      Li M Z, Xia Z G. Recent Progress of Zero-Dimensional Luminescent Metal Halides[J]. Chem. Soc. Rev., 2021,50(4):2626-2662. doi: 10.1039/D0CS00779J

    9. [9]

      Mao L L, Guo P J, Kepenekian M, Hadar I, Katan C, Even J, Schaller R D, Stoumpos C C, Kanatzidis M G. Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites[J]. J. Am. Chem. Soc., 2018,140(40):13078-13088. doi: 10.1021/jacs.8b08691

    10. [10]

      McCall K M, Morad V, Benin B M, Kovalenko M V. Efficient Lone-Pair-Driven Luminescence: Structure-Property Relationships in Emissive 5s2 Metal Halides[J]. ACS Mater. Lett., 2020,2(9):1218-1232. doi: 10.1021/acsmaterialslett.0c00211

    11. [11]

      Yuan Z, Zhou C K, Tian Y, Shu Y, Messier J, Wang J C, van de Burgt L J, Kountouriotis K, Xin Y, Holt E, Schanze K, Clark R, Siegrist T, Ma B W. One-Dimensional Organic Lead Halide Perovskites with Efficient Bluish White-Light Emission[J]. Nat. Commun., 2017,814051. doi: 10.1038/ncomms14051

    12. [12]

      Qi Z K, Chen Y L, Guo Y, Yang X L, Gao H Z, Zhou G J, Li S L, Zhang X M. Highly Efficient Self-Trapped Exciton Emission in a One-Dimensional Face-Shared Hybrid Lead Bromide[J]. Chem. Commun., 2021,57(20):2495-2498. doi: 10.1039/D0CC08218J

    13. [13]

      Deng C K, Hao S Q, Liu K J, Molokeev M S, Wolverton C, Fan L B, Zhou G J, Chen D, Zhao J, Liu Q L. Broadband Light Emitting Zero-Dimensional Antimony and Bismuth-Based Hybrid Halides with Diverse Structures[J]. J. Mater. Chem. C, 2021,9(44):15942-15948. doi: 10.1039/D1TC04198C

    14. [14]

      Chen D, Hao S Q, Fan L B, Guo Y W, Yao J Y, Wolverton C, Kanatzidis M G, Zhao J, Liu Q L. Broad Photoluminescence and Second-Harmonic Generation in the Noncentrosymmetric Organic-Inorganic Hybrid Halide (C6H5(CH2)4NH3)4MX7·H2O (M=Bi, In, X=Br or I)[J]. Chem. Mater., 2021,33:8106-8111. doi: 10.1021/acs.chemmater.1c02896

    15. [15]

      Chen D, Dai F L, Hao S Q, Zhou G J, Liu Q L, Wolverton C, Zhao J, Xia Z G. Crystal Structure and Luminescence Properties of Lead-Free Metal Halides (C6H5CH2NH3)3MBr6(M=Bi and Sb)[J]. J. Mater. Chem. C, 2020,8(22):7322-7329. doi: 10.1039/D0TC00562B

    16. [16]

      Liu K J, Deng C K, Li C X, Zhang X S, Cao J D, Yao J Y, Zhao J, Jiang X X, Lin Z S, Liu Q L. Hybrid Metal-Halide Infrared Nonlinear Optical Crystals of (TMEDA)MI5(M=Sb, Bi) with High Stability[J]. Adv. Opt. Mater., 2021,9(24)2101333. doi: 10.1002/adom.202101333

    17. [17]

      Hao P F, Wang W P, Shen J J, Fu Y L. Non-Transient Thermo-/Photochromism of Iodobismuthate Hybrids Directed by Solvated Metl Cations[J]. Dalton Trans., 2020,49(6):1847-1853. doi: 10.1039/C9DT04818A

    18. [18]

      Dehnhardt N, Paneth H, Hecht N, Heine J. Multinary Halogenido Bismuthates beyond the Double Perovskite Motif[J]. Inorg. Chem., 2020,59(6):3394-3405. doi: 10.1021/acs.inorgchem.9b03287

    19. [19]

      Dohner E R, Jaffe A, Bradshaw L R, Karunadasa H I. Intrinsic White-Light Emission from Layered Hybrid Perovskites[J]. J. Am. Chem. Soc., 2014,136(38):13154-13157. doi: 10.1021/ja507086b

    20. [20]

      Morad V, Shynkarenko Y, Yakunin S, Brumberg A, Schaller R D, Kovalenko M V. Disphenoidal Zero-Dimensional Lead, Tin, and Germanium Halides: Highly Emissive Singlet and Triplet Self-Trapped Excitons and X-ray Scintillation[J]. J. Am. Chem. Soc., 2019,141(25):9764-9768. doi: 10.1021/jacs.9b02365

    21. [21]

      Gong L K, Huang F Q, Zhang Z Z, Zhong Y, Jin J C, Du K Z, Huang X Y. Multimode Dynamic Luminescent Switching of Lead Halide Hybrids for Anti-counterfeiting and Encryption[J]. Chem. Eng. J., 2021,424130544. doi: 10.1016/j.cej.2021.130544

    22. [22]

      Lin H R, Zhou C K, Chaaban M, Xu L J, Zhou Y, Neu J, Worku M, Berkwits E, He Q Q, Lee S J, Lin X S, Siegrist T, Du M H, Ma B W. Bulk Assembly of Zero-Dimensional Organic Lead Bromide Hybrid with Efficient Blue Emission[J]. ACS Mater. Lett., 2019,1(6):594-598. doi: 10.1021/acsmaterialslett.9b00333

    23. [23]

      Dhanabalan B, Castelli A, Palei M, Spirito D, Manna L, Krahne R, Arciniegas M. Simple Fabrication of Layered Halide Perovskite Platelets and Enhanced Photoluminescence from Mechanically Exfoliated Flakes[J]. Nanoscale, 2019,11(17):8334-8342. doi: 10.1039/C9NR00638A

    24. [24]

      Dou L T, Wong A B, Yu Y, Lai M L, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically Thin Two-Dimensional Organic-Inorganic Hybrid Perovskites[J]. Science, 2015,349(6255):1518-1521. doi: 10.1126/science.aac7660

    25. [25]

      Cui B B, Han Y, Huang B L, Zhao Y Z, Wu X X, Liu L, Cao G Y, Du Q, Liu N, Zou W, Sun M Z, Wang L, Liu X F, Wang J P, Zhou H P, Chen Q. Locally Collective Hydrogen Bonding Isolates Lead Octahedra for White Emission Improvement[J]. Nat. Commun., 2019,10(1)5190. doi: 10.1038/s41467-019-13264-5

    26. [26]

      Lin H R, Zhou C K, Neu J, Zhou Y, Han D, Chen S Y, Worku M, Chaaban M, Lee S J, Berkwits E, Siegrist T, Du M H, Ma B W. Bulk Assembly of Corrugated 1D Metal Halides with Broadband Yellow Emission[J]. Adv. Opt. Mater., 2019,7(6)1801474. doi: 10.1002/adom.201801474

    27. [27]

      Sun X Y, Yue M, Jiang Y X, Zhao C H, Liao Y Y, Lei X W, Yue C Y. Combining Dual-Light Emissions to Achieve Efficient Broadband Yellowish-Green Luminescence in One-Dimensional Hybrid Lead Halides[J]. Inorg. Chem., 2021,60(3):1491-1498. doi: 10.1021/acs.inorgchem.0c02785

    28. [28]

      Zhang W F, Pan W J, Xu T, Song R Y, Zhao Y Y, Yue C Y, Lei X W. One-Dimensional Face-Shared Perovskites with Broad-Band Bluish White-Light Emissions[J]. Inorg. Chem., 2020,59(19):14085-14092. doi: 10.1021/acs.inorgchem.0c01861

    29. [29]

      Yang W T, Xiao X L, Li M K, Hu J R, Xiao X F, Tong G L, Chen J N, He Y B. Conjugated Ditertiary Ammonium Templated (100)-Oriented 2D Perovskite with Efficient Broad-Band Emission[J]. Chem. Mater., 2021,33(12):4456-4464. doi: 10.1021/acs.chemmater.1c00624

    30. [30]

      Wu S Q, Zhou B, Yan D P. Low-Dimensional Organic Metal Halide Hybrids with Excitation-Dependent Optical Waveguides from Visible to Near-Infrared Emission[J]. ACS Appl. Mater. Interfaces, 2021,13(22):26451-26460. doi: 10.1021/acsami.1c03926

    31. [31]

      Yuan H L, Massuyeau F, Gautier N, Kama A B, Faulques E, Chen F, Shen Q, Zhang L M, Paris M, Gautier R. Doped Lead Halide White Phosphors for Very High Efficiency and Ultra-High Color Rendering[J]. Angew. Chem. Int. Ed., 2020,59(7):2802-2807. doi: 10.1002/anie.201910180

    32. [32]

      Zhou J, Li M Z, Ning L X, Zhang R L, Molokeev M S, Zhao J, Yang S Q, Han K L, Xia Z G. Broad-Band Emission in a Zero-Dimensional Hybrid Organic [PbBr6] Trimer with Intrinsic Vacancies[J]. J. Phys. Chem. Lett., 2019,10(6):1337-1341. doi: 10.1021/acs.jpclett.9b00238

    33. [33]

      Shi H L, Han D, Chen S Y, Du M H. Impact of Metal ns2 Lone Pair on Luminescence Quantum Efficiency in Low-Dimensional Halide Perovskites[J]. Phys. Rev. Mater., 2019,3(3)034604. doi: 10.1103/PhysRevMaterials.3.034604

    34. [34]

      Fu Y P, Jin S, Zhu X Y. Stereochemical Expression of ns2 Electron Pairs in Metal Halide Perovskites[J]. Nat. Rev. Chem., 2021,5(12):838-852. doi: 10.1038/s41570-021-00335-9

    35. [35]

      Liu X Y, Li Y Y, Liang T Y, Fan J Y. Role of Polyhedron Unit in Distinct Photophysics of Zero-Dimensional Organic-Inorganic Hybrid Tin Halide Compounds[J]. J. Phys. Chem. Lett., 2021,12(24):5765-5773. doi: 10.1021/acs.jpclett.1c01540

    36. [36]

      Zhou C K, Lin H R, Tian Y, Yuan Z, Clark R, Chen B H, Van De Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B W. Luminescent Zero-Dimensional Organic Metal Halide Hybrids with Near-Unity Quantum Efficiency[J]. Chem. Sci., 2018,9(3):586-593. doi: 10.1039/C7SC04539E

    37. [37]

      Biswas A, Bakthavatsalam R, Bahadur V, Biswas C, Mali B P, Raavi S S K, Gonnade R G, Kundu J. Lead-Free Zero Dimensional Tellurium (ⅳ) Chloride-Organic Hybrid with Strong Room Temperature Emission as a Luminescent Material[J]. J. Mater. Chem. C, 2021,9(12):4351-4358. doi: 10.1039/D0TC05752E

    38. [38]

      Wang A F, Guo Y Y, Zhou Z B, Niu X H, Wang Y G, Muhammad F, Li H B, Zhang T, Wang J L, Nie S M, Deng Z T. Aqueous Acid-Based Synthesis of Lead-Free Tin Halide Perovskites with Near-Unity Photoluminescence Quantum Efficiency[J]. Chem. Sci., 2019,10(17):4573-4579. doi: 10.1039/C9SC00453J

    39. [39]

      Fu P F, Huang M L, Shang Y Q, Yu N, Zhou H L, Zhang Y B, Chen S Y, Gong J K, Ning Z J. Organic-Inorganic Layered and Hollow Tin Bromide Perovskite with Tunable Broadband Emission[J]. ACS Appl. Mater. Interfaces, 2018,10(40):34363-34369. doi: 10.1021/acsami.8b07673

    40. [40]

      Wang S X, Popović J, Burazer S, Portniagin A, Liu F Z, Low K H, Duan Z H, Li Y X, Xiong Y, Zhu Y M, Kershaw S V, Djurišić A B, Rogach A L. Strongly Luminescent Dion-Jacobson Tin Bromide Perovskite Microcrystals Induced by Molecular Proton Donors Chloroform and Dichloromethane[J]. Adv. Funct. Mater., 2021,31(28)2102182. doi: 10.1002/adfm.202102182

    41. [41]

      Su B B, Song G M, Molokeev M S, Lin Z S, Xia Z G. Synthesis, Crystal Structure and Green Luminescence in Zero-Dimensional Tin Halide (C8H14N2)2SnBr6[J]. Inorg. Chem., 2020,59(14):9962-9968. doi: 10.1021/acs.inorgchem.0c01103

    42. [42]

      Wolf S, Liebertseder M, Feldmann C. Synthesis, Structure, and Photoluminesence of the Chloridoaluminates [BMIm] [Sn(AlCl4)3], [BMPyr] [Sn(AlCl4)3], and [BMIm] [Pb(AlCl4)3][J]. Dalton Trans., 2021,50(24):8549-8557. doi: 10.1039/D0DT03766D

    43. [43]

      Zhou C K, Worku M, Neu J, Lin H R, Tian Y, Lee S J, Zhou Y, Han D, Chen S Y, Hao A, Djurovich P I, Siegrist T, Du M H, Ma B W. Facile Preparation of Light Emitting Organic Metal Halide Crystals with Near-Unity Quantum Efficiency[J]. Chem. Mater., 2018,30(7):2374-2378. doi: 10.1021/acs.chemmater.8b00129

    44. [44]

      Li Z Y, Li Y, Liang P, Zhou T L, Wang L, Xie R J. Dual-Band Luminescent Lead-Free Antimony Chloride Halides with Near-Unity Photoluminescence Quantum Efficiency[J]. Chem. Mater., 2019,31(22):9363-9371. doi: 10.1021/acs.chemmater.9b02935

    45. [45]

      Morad V, Yakunin S, Benin B M, Shynkarenko Y, Grotevent M J, Shorubalko I, Boehme S C, Kovalenko M V. Hybrid 0D Antimony Halides as Air-Stable Luminophores for High-Spatial-Resolution Remote Thermography[J]. Adv. Mater., 2021,33(9)e2007355. doi: 10.1002/adma.202007355

    46. [46]

      He Q Q, Zhou C K, Xu L J, Lee S J, Lin X S, Neu J, Worku M, Chaaban M, Ma B W. Highly Stable Organic Antimony Halide Crystals for X-ray Scintillation[J]. ACS Mater. Lett., 2020,2(6):633-638. doi: 10.1021/acsmaterialslett.0c00133

    47. [47]

      Chen D, Hao S Q, Zhou G J, Deng C K, Liu Q L, Ma S L, Wolverton C, Zhao J, Xia Z G. Lead-Free Broadband Orange-Emitting Zero-Dimensional Hybrid (PMA)3InBr6 with Direct Band Gap[J]. Inorg. Chem., 2019,58(22):15602-15609. doi: 10.1021/acs.inorgchem.9b02669

    48. [48]

      Fattal H, Creason T D, Delzer C J, Yangui A, Hayward J P, Ross B J, Du M H, Glatzhofer D T, Saparov B. Zero-Dimensional Hybrid Organic-Inorganic Indium Bromide with Blue Emission[J]. Inorg. Chem., 2021,60(2):1045-1054. doi: 10.1021/acs.inorgchem.0c03164

    49. [49]

      WANG S Y, CHEN D, LIU X L, WANG S W, YUAN Y N, WANG Z P, YANG C. Structures and Photoluminescence Properties of Zinc(Ⅱ)/Cadmium (Ⅱ)-Based Organic-Inorganic Hybrid Metal Halides Derived from (E)-N, N-Dimethyl-4-(2-(pyridin-4-yl)vinyl) aniline[J]. Chinese J. Inorg. Chem., 2021,37(9):1659-1664.  

    50. [50]

      Xu L J, Plaviak A, Lin X S, Worku M, He Q Q, Chaaban M, Kim B J, Ma B W. Metal Halide Regulated Photophysical Tuning of Zero-Dimensional Organic Metal Halide Hybrids: From Efficient Phosphorescence to Ultralong Afterglow[J]. Angew. Chem. Int. Ed., 2020,59(51):23067-23071. doi: 10.1002/anie.202010555

    51. [51]

      Lian L Y, Zhang P, Liang G J, Wang S, Wang X, Wang Y, Zhang X W, Gao J B, Zhang D L, Gao L, Song H S, Chen R, Lan X Z, Liang W X, Niu G D, Tang J, Zhang J B. Efficient Dual-Band White-Light Emission with High Color Rendering from Zero-Dimensional Organic Copper Iodide[J]. ACS Appl. Mater. Interfaces, 2021,13(19):22749-22756. doi: 10.1021/acsami.1c03881

    52. [52]

      Zhang R C, Wang J J, Zhang J C, Wang M Q, Sun M, Ding F, Zhang D J, An Y L. Coordination-Induced Syntheses of Two Hybrid Framework Iodides: A Thermochromic Luminescent Thermometer[J]. Inorg. Chem., 2016,55(15):7556-7563. doi: 10.1021/acs.inorgchem.6b00973

    53. [53]

      Song G M, Li M Z, Yang Y, Liang F, Huang Q, Liu X M, Gong P F, Xia Z G, Lin Z S. Lead-Free Tin(Ⅳ)-Based Organic-Inorganic Metal Halide Hybrids with Excellent Stability and Blue-Broadband Emission[J]. J. Phys. Chem. Lett., 2020,11(5):1808-1813. doi: 10.1021/acs.jpclett.0c00096

    54. [54]

      Peng H, Tian Y, Zhang Z H, Wang X X, Huang T, Dong T T, Xiao Y H, Wang J P, Zou B S. Bulk Assembly of Zero-Dimensional Organic Copper Bromide Hybrid with Bright Self-Trapped Exciton Emission and High Antiwater Stability[J]. J. Phys. Chem. C, 2021,125(36):20014-20021. doi: 10.1021/acs.jpcc.1c05065

    55. [55]

      Liu F, Mondal D, Zhang K, Zhang Y, Huang K K, Wang D Y, Yang W S, Mahadevan P, Xie R G. Zero-Dimensional Plate-Shaped Copper Halide Crystals with Green-Yellow Emissions[J]. Mater. Adv., 2021,2(11):3744-3751. doi: 10.1039/D1MA00061F

    56. [56]

      Peng H, Wang X X, Tian Y, Zou B S, Yang F, Huang T, Peng C Y, Yao S F, Yu Z M, Yao Q R, Rao G H, Wang J Q. Highly Efficient Cool-White Photoluminescence of (Gua)3Cu2I5 Single Crystals: Formation and Optical Properties[J]. ACS Appl. Mater. Interfaces, 2021,13(11):13443-13451. doi: 10.1021/acsami.1c02503

    57. [57]

      Huang J L, Su B B, Song E H, Molokeev M S, Xia Z G. Ultra-Broad-Band-Excitable Cu(Ⅰ)-Based Organometallic Halide with Near-Unity Emission for Light-Emitting Diode Applications[J]. Chem. Mater., 2021,33(12):4382-4389. doi: 10.1021/acs.chemmater.1c00085

    58. [58]

      Wang S X, Morgan E E, Vishnoi P, Mao L L, Teicher S M L, Wu G, Liu Q L, Cheetham A K, Seshadri R. Tunable Luminescence in Hybrid Cu(Ⅰ) and Ag(Ⅰ) Iodides[J]. Inorg. Chem., 2020,59(20):15487-15494. doi: 10.1021/acs.inorgchem.0c02517

    59. [59]

      Huitorel B, El Moll H, Utrera-Melero R, Cordier M, Fargues A, Garcia A, Massuyeau F, Martineau-Corcos C, Fayon F, Rakhmatullin A, Kahlal S, Saillard J Y, Gacoin T, Perruchas S. Evaluation of Ligands Effect on the Photophysical Properties of Copper Iodide Clusters[J]. Inorg. Chem., 2018,57(8):4328-4339. doi: 10.1021/acs.inorgchem.7b03160

    60. [60]

      Utrera-Melero R, Huitorel B, Cordier M, Mevellec J Y, Massuyeau F, Latouche C, Martineau-Corcos C, Perruchas S. Combining Theory and Experiment to Get Insight into the Amorphous Phase of Luminescent Mechanochromic Copper Iodide Clusters[J]. Inorg. Chem., 2020,59(18):13607-13620. doi: 10.1021/acs.inorgchem.0c01967

    61. [61]

      Perruchas S, Tard C, Le Goff X F, Fargues A, Garcia A, Kahlal S, Saillard J Y, Gacoin T, Boilot J P. Thermochromic Luminescence of Copper Iodide Clusters: The Case of Phosphine Ligands[J]. Inorg. Chem., 2011,50(21):10682-10692. doi: 10.1021/ic201128a

    62. [62]

      Yangui A, Roccanova R, McWhorter T M, Wu Y T, Du M H, Saparov B. Hybrid Organic-Inorganic Halides (C5H7N2)2MBr4(M=Hg, Zn) with High Color Rendering Index and High-Efficiency White-Light Emission[J]. Chem. Mater., 2019,31(8):2983-2991. doi: 10.1021/acs.chemmater.9b00537

    63. [63]

      Zhang X Y, Li L, Wang S S, Liu X T, Yao Y P, Peng Y, Hong M C, Luo J H. [(N-AEPz)ZnCl4] Cl: A "Green"Metal Halide Showing Highly Efficient Bluish-White-Light Emission[J]. Inorg. Chem., 2020,59(6):3527-3531. doi: 10.1021/acs.inorgchem.0c00078

    64. [64]

      Sun C, Guo Y H, Yuan Y, Chu W X, He W L, Che H X, Jing Z H, Yue C Y, Lei X W. Broadband White-Light Emission in One-Dimensional Organic-Inorganic Hybrid Silver Halide[J]. Inorg. Chem., 2020,59(7):4311-4319. doi: 10.1021/acs.inorgchem.9b03139

    65. [65]

      Gong L K, Hu Q Q, Huang F Q, Zhang Z Z, Shen N N, Hu B, Song Y, Wang Z P, Du K Z, Huang X Y. Efficient Modulation of Photoluminescence by Hydrogen Bonding Interactions between Inorganic [MnBr4]2- Anions and Organic Cations[J]. Chem. Commun., 2019,55(51):7303-7306. doi: 10.1039/C9CC03038G

    66. [66]

      Wang S Y, Han X X, Kou T T, Zhou Y Y, Liang Y, Wu Z X, Huang J L, Chang T, Peng C Y, Wei Q L, Zou B S. Lead-Free Mn-Based Red-Emitting Hybrid Halide (CH6N3)2MnCl4 toward High Performance Warm WLEDs[J]. J. Mater. Chem. C, 2021,9(14):4895-4902. doi: 10.1039/D1TC00632K

    67. [67]

      Jana A, Zhumagali S, Ba Q K, Nissimagoudar A S, Kim K S. Direct Emission from Quartet Excited States Triggered by Upconversion Phenomena in Solid-Phase Synthesized Fluorescent Lead-Free Organic-Inorganic Hybrid Compounds[J]. J. Mater. Chem. A, 2019,7(46):26504-26512. doi: 10.1039/C9TA08268A

    68. [68]

      Li M Z, Zhou J, Molokeev M S, Jiang X X, Lin Z S, Zhao J, Xia Z G. Lead-Free Hybrid Metal Halides with a Green-Emissive [MnBr4] Unit as a Selective Turn-On Fluorescent Sensor for Acetone[J]. Inorg. Chem., 2019,58(19):13464-13470. doi: 10.1021/acs.inorgchem.9b02374

    69. [69]

      Li L Y, Li L, Li Q Q, Shen Y M, Pan S K, Pan J G. Synthesis, Crystal Structure and Optical Property of Manganese (Ⅱ) Halides Based on Pyridine Ionic Liquids with High Quantum Yield[J]. Transition. Met. Chem., 2020,45(6):413-421. doi: 10.1007/s11243-020-00393-w

    70. [70]

      Zhang S, Zhao Y F, Zhou Y Y, Li M, Wang W, Ming H, Jing X P, Ye S. Dipole-Orientation-Dependent Forster Resonance Energy Transfer from Aromatic Head Groups to MnBr42- Blocks in Organic-Inorganic Hybrids[J]. J. Phys. Chem. Lett., 2021,12(36):8692-8698. doi: 10.1021/acs.jpclett.1c02686

    71. [71]

      Zhou G J, Liu Z Y, Molokeev M S, Xiao Z W, Xia Z G, Zhang X M. Manipulation of Cl/Br Transmutation in Zero-Dimensional Mn2+-Based Metal Halides toward Tunable Photoluminescence and Thermal Quenching Behaviors[J]. J. Mater. Chem. C, 2021,9(6):2047-2053. doi: 10.1039/D0TC05137C

    72. [72]

      Mao L L, Guo P J, Wang S X, Cheetham A K, Seshadri R. Design Principles for Enhancing Photoluminescence Quantum Yield in Hybrid Manganese Bromides[J]. J. Am. Chem. Soc., 2020,142(31):13582-13589. doi: 10.1021/jacs.0c06039

    73. [73]

      Morad V, Cherninkh I, Pottschacher L, Shynkarenko Y, Yakunin S, Kovalenko M V. Manganese (Ⅱ) in Tetrahedral Halide Environment: Factors Governing Bright Green Luminescence[J]. Chem. Mater., 2019,31(24):10161-10169. doi: 10.1021/acs.chemmater.9b03782

    74. [74]

      Zhao J, Zhang T J, Dong X Y, Sun M E, Zhang C, Li X L, Zhao Y S, Zang S Q. Circularly Polarized Luminescence from Achiral Single Crystals of Hybrid Manganese Halides[J]. J. Am. Chem. Soc., 2019,141(40):15755-15760. doi: 10.1021/jacs.9b08780

    75. [75]

      Sun M E, Li Y, Dong X Y, Zang S Q. Thermoinduced Structural-Transformation and Thermochromic Luminescence in Organic Manganese Chloride Crystals[J]. Chem. Sci., 2019,10(13):3836-3839. doi: 10.1039/C8SC04711A

    76. [76]

      Jiang X M, Chen Z L, Tao X T. (1-C5H14N2Br)2MnBr4: A Lead-Free Zero-Dimensional Organic-Metal Halide with Intense Green Photoluminescence[J]. Front. Chem., 2020,8352. doi: 10.3389/fchem.2020.00352

    77. [77]

      Jiang X M, Xia S Q, Zhang J, Ju D X, Liu Y, Hu X B, Wang L, Chen Z L, Tao X T. Exploring Organic Metal Halides with Reversible Temperature-Responsive Dual-Emissive Photoluminescence[J]. ChemSusChem, 2019,12(24):5228-5232. doi: 10.1002/cssc.201902481

    78. [78]

      Zhang Y, Liao W Q, Fu D W, Ye H Y, Chen Z N, Xiong R G. Highly Efficient Red-Light Emission in an Organic-Inorganic Hybrid Ferroelectric: (Pyrrolidinium)MnCl3[J]. J. Am. Chem. Soc., 2015,137(15):4928-4931. doi: 10.1021/jacs.5b01680

    79. [79]

      Ye H Y, Zhou Q, Niu X, Liao W Q, Fu D W, Zhang Y, You Y M, Wang J, Chen Z N, Xiong R G. High-Temperature Ferroelectricity and Photoluminescence in a Hybrid Organic-Inorganic Compound: (3-Pyrrolinium)MnCl3[J]. J. Am. Chem. Soc., 2015,137(40):13148-13154. doi: 10.1021/jacs.5b08290

    80. [80]

      Xu L J, Lee S J, Lin X S, Ledbetter L, Worku M, Lin H R, Zhou C K, Liu H, Plaviak A, Ma B W. Multicomponent Organic Metal Halide Hybrid with White Emissions[J]. Angew. Chem. Int. Ed., 2020,59(33):14120-14123. doi: 10.1002/anie.202006064

    81. [81]

      Li M Z, Molokeev M S, Zhao J, Xia Z G. Optical Functional Units in Zero-Dimensional Metal Halides as a Paradigm of Tunable Photoluminescence and Multicomponent Chromophores[J]. Adv. Opt. Mater., 2020,8(8)1902114. doi: 10.1002/adom.201902114

    82. [82]

      Zhou C K, Lee S J, Lin H R, Neu J, Chaaban M, Xu L J, Arcidiacono A, He Q Q, Worku M, Ledbetter L, Lin X S, Schlueter J A, Siegrist T, Ma B W. Bulk Assembly of Multicomponent Zero-Dimensional Metal Halides with Dual Emission[J]. ACS Mater. Lett., 2020,2(4):376-380. doi: 10.1021/acsmaterialslett.0c00011

    83. [83]

      Lee S J, Zhou C K, Neu J, Beery D, Arcidiacono A, Chaaban M, Lin H R, Gaiser A, Chen B H, Albrecht-Schmitt T E, Siegrist T, Ma B W. Bulk Assemblies of Lead Bromide Trimer Clusters with Geometry-Dependent Photophysical Properties[J]. Chem. Mater., 2020,32(1):374-380. doi: 10.1021/acs.chemmater.9b03893

    84. [84]

      Zhou C K, Lin H R, Neu J, Zhou Y, Chaaban M, Lee S J, Worku M, Chen B H, Clark R, Cheng W H, Guan J J, Djurovich P, Zhang D Z, Lü X J, Bullock J, Pak C, Shatruk M, Du M H, Siegrist T, Ma B W. Green Emitting Single-Crystalline Bulk Assembly of Metal Halide Clusters with Near-Unity Photoluminescence Quantum Efficiency[J]. ACS Energy Lett., 2019,4(7):1579-1583. doi: 10.1021/acsenergylett.9b00991

    85. [85]

      Li M Z, Zhou J, Zhou G J, Molokeev M S, Zhao J, Morad V, Kovalenko M V, Xia Z G. Hybrid Metal Halides with Multiple Photoluminescence Centers[J]. Angew. Chem. Int. Ed., 2019,58(51):18670-18675. doi: 10.1002/anie.201911419

    86. [86]

      Zhou C K, Lin H R, Worku M, Neu J, Zhou Y, Tian Y, Lee S J, Djurovich P, Siegrist T, Ma B W. Blue Emitting Single Crystalline Assembly of Metal Halide Clusters[J]. J. Am. Chem. Soc., 2018,140(41):13181-13184. doi: 10.1021/jacs.8b07731

    87. [87]

      Zhang Z Z, Jin J C, Gong L K, Lin Y P, Du K Z, Huang X Y. Columinescence in a Zero-Dimensional Organic-Inorganic Hybrid Antimony Halide with Multiple Coordination Units[J]. Dalton Trans., 2021,50(10):3586-3592. doi: 10.1039/D0DT04388E

    88. [88]

      Fan L B, Liu K J, Zeng Q D, Li M Y, Cai H, Zhou J, He S H, Zhao J, Liu Q L. Efficiency-Tunable Single-Component White-Light Emission Realized in Hybrid Halides through Metal Co-Occupation[J]. ACS Appl. Mater. Interfaces, 2021,13(25):29835-29842. doi: 10.1021/acsami.1c07636

    89. [89]

      Peng Y, Li L N, Ji C M, Wu Z Y, Wang S S, Liu X T, Yao Y P, Luo J H. Tailored Synthesis of an Unprecedented Pb-Mn Heterometallic Halide Hybrid with Enhanced Emission[J]. J. Am. Chem. Soc., 2019,141(31):12197-12201. doi: 10.1021/jacs.9b04829

    90. [90]

      Smith M D, Karunadasa H I. White-Light Emission from Layered Halide Perovskites[J]. Acc. Chem. Res., 2018,51(3):619-627. doi: 10.1021/acs.accounts.7b00433

    91. [91]

      Zhao J Q, Sun C, Yue M, Meng Y, Zhao X M, Zeng L R, Chen G, Yue C Y, Lei X W. Lead Chlorine Cluster Assembled One-Dimensional Halide with Highly Efficient Broadband White-Light Emission[J]. Chem. Commun., 2021,57(10):1218-1221. doi: 10.1039/D0CC05570K

    92. [92]

      Yang B, Chen J S, Hong F, Mao X, Zheng K B, Yang S Q, Li Y J, Pullerits T, Deng W Q, Han K L. Lead-Free, Air-Stable All-Inorganic Cesium Bismuth Halide Perovskite Nanocrystals[J]. Angew. Chem. Int. Ed., 2017,56(41):12471-12475. doi: 10.1002/anie.201704739

    93. [93]

      Yang B, Hong F, Chen J S, Tang Y X, Yang L, Sang Y B, Xia X S, Guo J W, He H X, Yang S Q, Deng W Q, Han K L. Colloidal Synthesis and Charge-Carrier Dynamics of Cs2AgSb1-yBiyX6(X: Br, Cl; 0≤ y ≤ 1) Double Perovskite Nanocrystals[J]. Angew. Chem. Int. Ed., 2019,58(8):2278-2283. doi: 10.1002/anie.201811610

    94. [94]

      Yang B, Han K L. Ultrafast Dynamics of Self-Trapped Excitons in Lead-Free Perovskite Nanocrystals[J]. J. Phys. Chem. Lett., 2021,12(34):8256-8262. doi: 10.1021/acs.jpclett.1c01828

    95. [95]

      Cheng X H, Jing L, Yuan Y, Du S J, Yao Q, Zhang J, Ding J X, Zhou T L. Centimeter-Size Square 2D Layered Pb-Free Hybrid Perovskite Single Crystal (CH3NH3)2MnCl4 for Red Photoluminescence[J]. CrystEngComm, 2019,21(27):4085-4091. doi: 10.1039/C9CE00591A

    96. [96]

      Xu L J, Lin H R, Lee S J, Zhou C K, Worku M, Chaaban M, He Q Q, Plaviak A, Lin X S, Chen B H, Du M H, Ma B W. 0D and 2D: The Cases of Phenylethylammonium Tin Bromide Hybrids[J]. Chem. Mater., 2020,32(11):4692-4698. doi: 10.1021/acs.chemmater.0c01254

    97. [97]

      Wu Y, Shi C M, Xu L J, Yang M, Chen Z N. Reversible Luminescent Vapochromism of a Zero-Dimensional Sb3+-Doped Organic-Inorganic Hybrid[J]. J. Phys. Chem. Lett., 2021,12(13):3288-3294. doi: 10.1021/acs.jpclett.1c00418

    98. [98]

      Zhang Y, Yang C, Feng J, Wang N, Li Q, Guo F W, Wang J, Xu D S. High-Efficiency Histamine-In-Based Halide Phosphors with Excellent Thermal Stability[J]. Sci. Sin. Chim., 2021,51(7):967-974. doi: 10.1360/SSC-2021-0069

    99. [99]

      Zhou J, Li M Z, Molokeev M S, Sun J Y, Xu D H, Xia Z G. Tunable Photoluminescence in Sb3+-Doped Zero-Dimensional Hybrid Metal Halides with Intrinsic and Extrinsic Self-Trapped Excitons[J]. J. Mater. Chem. C, 2020,8(15):5058-5063. doi: 10.1039/D0TC00391C

    100. [100]

      Li Z Y, Song G M, Li Y, Wang L, Zhou T L, Lin Z S, Xie R J. Realizing Tunable White Light Emission in Lead-Free Indium (Ⅲ) Bromine Hybrid Single Crystals through Antimony(Ⅲ) Cation Doping[J]. J. Phys. Chem. Lett., 2020,11(23):10164-10172. doi: 10.1021/acs.jpclett.0c03079

    101. [101]

      Artem'ev A V, Davydova M P, Berezin A S, Brel V K, Morgalyuk V P, Bagryanskaya I Y, Samsonenko D G. Luminescence of the Mn2+ Ion in Non-Oh and Td Coordination Environments: the Missing Case of Square Pyramid[J]. Dalton Trans., 2019,48(43):16448-16456. doi: 10.1039/C9DT03283E

    102. [102]

      Ba Q K, Jana A, Wang L H, Kim K S. Dual Emission of Water-Stable 2D Organic-Inorganic Halide Perovskites with Mn(Ⅱ) Dopant[J]. Adv. Funct. Mater., 2019,29(43)1904768. doi: 10.1002/adfm.201904768

    103. [103]

      Cortecchia D, Mroz W, Neutzner S, Borzda T, Folpini G, Brescia R, Petrozza A. Defect Engineering in 2D Perovskite by Mn(Ⅱ) Doping for Light-Emitting Applications[J]. Chem, 2019,5(8):2146-2158. doi: 10.1016/j.chempr.2019.05.018

    104. [104]

      Mei Y X, Yu H, Wei Z H, Mei G Q, Cai H. Two Coordinated Geometries of Mn2+ Ions in One Single Molecule: Organic-Inorganic Hybrids Constructed with Tris(2-aminoethyl)amine and Manganese Halide and Fluorescent Properties[J]. Polyhedron, 2017,127:458-463. doi: 10.1016/j.poly.2016.10.047

    105. [105]

      Biswas A, Bakthavatsalam R, Kundu J. Efficient Exciton to Dopant Energy Transfer in Mn2+-Doped (C4H9NH3)2PbBr4 Two-Dimensional (2D) Layered Perovskites[J]. Chem. Mater., 2017,29(18):7816-7825. doi: 10.1021/acs.chemmater.7b02429

    106. [106]

      Sarang S, Delmas W, Naghadeh S B, Cherrette V, Zhang J Z, Ghosh S. Low-Temperature Energy Transfer via Self-Trapped Excitons in Mn2+-Doped 2D Organometal Halide Perovskites[J]. J. Phys. Chem. Lett., 2020,11(24):10368-10374. doi: 10.1021/acs.jpclett.0c03287

    107. [107]

      Su B B, Molokeev M S, Xia Z G. Unveiling Mn2+ Dopant States in Two-Dimensional Halide Perovskite toward Highly Efficient Photoluminescence[J]. J. Phys. Chem. Lett., 2020,11(7):2510-2517. doi: 10.1021/acs.jpclett.0c00593

    108. [108]

      Yu J C, Kong J T, Hao W, Guo X T, He H J, Leow W R, Liu Z Y, Cai P Q, Qian G D, Li S Z, Chen X Y, Chen X D. Broadband Extrinsic Self-Trapped Exciton Emission in Sn-Doped 2D Lead-Halide Perovskites[J]. Adv. Mater., 2019,31(7)e1806385.

    109. [109]

      Zhou G J, Liu Z Y, Huang J L, Molokeev M S, Xiao Z W, Ma C G, Xia Z G. Unraveling the Near-Unity Narrow-Band Green Emission in Zero-Dimensional Mn2+-Based Metal Halides: A Case Study of (C10H16N)2Zn1-xMnxBr4 Solid Solutions[J]. J. Phys. Chem. Lett., 2020,11(15):5956-5962. doi: 10.1021/acs.jpclett.0c01933

    110. [110]

      Pan H M, Yang Q L, Xing X X, Li J P, Meng F L, Zhang X, Xiao P C, Yue C Y, Lei X W. Enhancement of the Photoluminescence Efficiency of Hybrid Manganese Halides through Rational Structural Design[J]. Chem. Commun., 2021,57(56):6907-6910. doi: 10.1039/D1CC02353E

    111. [111]

      Ma Y Y, Song Y R, Xu W J, Zhong Q Q, Fu H Q, Liu X L, Yue C Y, Lei X W. Solvent-Free Mechanochemical Syntheses of Microscale Lead-Free Hybrid Manganese Halides as Efficient Green Light Phosphors[J]. J. Mater. Chem. C, 2021,9(31):9952-9961. doi: 10.1039/D1TC02330F

    112. [112]

      Li M Z, Li Y W, Molokeev M S, Zhao J, Na G R, Zhang L J, Xia Z G. Halogen Substitution in Zero-Dimensional Mixed Metal Halides toward Photoluminescence Modulation and Enhanced Quantum Yield[J]. Adv. Opt. Mater., 2020,8(16)2000418. doi: 10.1002/adom.202000418

    113. [113]

      Zhou L, Zhang L, Li H, Shen W, Li M, He R X. Defect Passivation in Air-Stable Tin (Ⅳ)-Halide Single Crystal for Emissive Self-Trapped Excitons[J]. Adv. Funct. Mater., 2021,31(51)2108561. doi: 10.1002/adfm.202108561

    114. [114]

      Wei Q, Chang T, Zeng R S, Cao S, Zhao J L, Han X X, Wang L H, Zou B S. Self-Trapped Exciton Emission in a Zero-Dimensional (TMA)2SbCl5·DMF Single Crystal and Molecular Dynamics Simulation of Structural Stability[J]. J. Phys. Chem. Lett., 2021,12(30):7091-7099. doi: 10.1021/acs.jpclett.1c02119

    115. [115]

      Wu Y Y, Fan W B, Gao Z R, Tang Z, Lei L, Sun X F, Li Y L, Cai H L, Wu X S. New Photoluminescence Hybrid Perovskites with Ultrahigh Photoluminescence Quantum Yield and Ultrahigh Thermostability Temperature up to 600 K[J]. Nano Energy, 2020,77105170. doi: 10.1016/j.nanoen.2020.105170

  • 加载中
    1. [1]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    2. [2]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    3. [3]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    4. [4]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    5. [5]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    11. [11]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    12. [12]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    13. [13]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    17. [17]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    18. [18]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    19. [19]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    20. [20]

      Yiming Lu Xiang Xie Xiaoqing Qiu Yang Liu Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061

Metrics
  • PDF Downloads(106)
  • Abstract views(2323)
  • HTML views(769)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return