Nickel Phosphide Corrosion Induced by Water and Corrosion Inhibition
- Corresponding author: Gong-Xuan LÜ, gxlu@lzb.ac.cn
Citation: Bo YANG, Gong-Xuan LÜ, Xu-Qiang ZHANG, Jian-Tai MA. Nickel Phosphide Corrosion Induced by Water and Corrosion Inhibition[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1337-1349. doi: 10.11862/CJIC.2022.106
YUAN Y M, CHEN H, ZHAO D Y, WU C, GENG J, SHEN J Y. Stability and Activity of Ni2P and NiSx for the Hydrotreating Reactions[J]. J. Mol. Catal.(China), 2021,35(3):263-272.
WANG S S, YU B. Preparation of (NiCo)2P/NF Self-Supporting Electrode and Its Electrocatalytic Water Splitting[J]. J. Mol. Catal.(China), 2020,34(1):81-86.
ZHAO M X, ZHANG T Y, DUAN T T, JIANG L J, YANG X Y, RONG M Z. Research Progress of Selective Oxidation of Alcohols to Aldehydes and Ketones by Electrocatalysis[J]. J. Mol. Catal.(China), 2021,35(6):583-594.
NING Y Y, LI G Y, ZHENG X C, XU C X, ZHOU M, HU Z Q. Research Progress of on Body Enzyme Biofuel Cell[J]. J. Mol. Catal.(China), 2021,35(4):365-374.
Kupka J, Budniok A. Electrolytic Oxygen Evolution on Ni-Co-P Alloys[J]. J. Appl. Electrochem., 1990,20(6):1015-1020. doi: 10.1007/BF01019582
Paseka I. Evolution of Hydrogen and Its Sorption on Remarkable Active Amorphous Smooth Ni-P(Ⅹ) Electrodes[J]. Electrochim. Acta, 1995,40(11):1633-1640. doi: 10.1016/0013-4686(95)00077-R
Liu P, Rodriguez J A. Catalysts for Hydrogen Evolution from the[NiFe]Hydrogenase to the Ni2P (001) Surface: The Importance of Ensemble Effect[J]. J. Am. Chem. Soc., 2005,127(42):14871-14878. doi: 10.1021/ja0540019
Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction[J]. J. Am. Chem. Soc., 2013,135(25):9267-9270. doi: 10.1021/ja403440e
Xu Y, Wu R, Zhang J F, Shi Y M, Zhang B. Anion-Exchange Synthesis of Nanoporous FeP Nanosheets as Electrocatalysts for Hydrogen Evolution Reaction[J]. Chem. Commun., 2013,49(59):6656-6658. doi: 10.1039/c3cc43107j
Laursen A B, Patraju K R, Whitaker M J, Retuerto M, Sarkar T, Yao N, Ramanujachary K V, Greenblatt M, Dismukes G C. Nanocrystal line Ni5P4:A Hydrogen Evolution Electrocatalyst of Exceptional Efficiency in Both Alkaline and Acidic Media[J]. Energy Environ. Sci., 2015,8(3):1027-1034. doi: 10.1039/C4EE02940B
Tian J Q, Liu Q, Asiri A M, Sun X P. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0-14[J]. J. Am. Chem. Soc., 2014,136(21):7587-7590. doi: 10.1021/ja503372r
Ledendecker M, Calderon S K, Papp C, Steinruck H P, Antonietti M, Shalom M. The Synthesis of Nanostructured Ni5P4 Films and Their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting[J]. Angew. Chem. Int. Ed., 2015,54(42):12361-12365. doi: 10.1002/anie.201502438
Ryu J, Jung N, Jang J H, Kim H J, Yoo S J. In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-Oxo/Hydroxo Molecular Units[J]. ACS Catal., 2015,5(7):4066-4074. doi: 10.1021/acscatal.5b00349
Zhang G, Wang G C, Liu Y, Liu H J, Qu J H, Li J H. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting[J]. J. Am. Chem. Soc., 2016,138(44):14686-14693. doi: 10.1021/jacs.6b08491
Zhou L, Shao M F, Li J B, Jiang S, Wei M, Duan X. Two-Dimensional Ultrathin Arrays of CoP: Electronic Modulation toward High Performance Overall Water Splitting[J]. Nano Energy, 2017,41:583-590. doi: 10.1016/j.nanoen.2017.10.009
Callejas J F, McEnaney J M, Read C G, Crompton J C, Biacchi A J, Popczun E J, Gordon T R, Lewis N S, Schaak R E. Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles[J]. ACS Nano, 2014,8(11):11101-11107. doi: 10.1021/nn5048553
Cao S, Chen Y, Hou C C, Lv X J, Fu W F. Cobalt Phosphide as a Highly Active Non-Precious Metal Cocatalyst for Photocatalytic Hydrogen Production under Visible Light Irradiation[J]. J. Mater. Chem. A, 2015,3(11):6096-6101. doi: 10.1039/C4TA07149B
Zhen W L, Ning X F, Yang B J, Wu Y Q, Li Z, Lu G X. The Enhancement of CdS Photocatalytic Activity for Water Splitting via Anti-photocorrosion by Coating Ni2P Shell and Removing Nascent Formed Oxygen with Artificial Gill[J]. Appl. Catal. B, 2018,221:243-257. doi: 10.1016/j.apcatb.2017.09.024
Tian B, Li Z, Zhen W L, Lu G X. Uniformly Sized (112) Facet Co2P on Graphene for Highly Effective Photocatalytic Hydrogen Evolution[J]. J. Phys. Chem. C, 2016,120(12):6409-6415. doi: 10.1021/acs.jpcc.6b00680
Saadi F H, Carim A I, Verlage E, Hemminger J C, Lewis N S, Soriaga M P. CoP as an Acid-Stable Active Electrocatalyst for the HydrogenEvolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation[J]. J. Phys. Chem. C, 2014,118(50):29294-29300. doi: 10.1021/jp5054452
Saadi F H, Carim A I, Drisdell W S, Gul S, Baricuatro J H, Yano J, Soriaga M P, Lewis N S. Operando Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction[J]. J. Am. Chem. Soc., 2017,139(37):12927-12930. doi: 10.1021/jacs.7b07606
Ahnt H S, Bard A J. Assessment of the Stability and Operability of Cobalt Phosphide Electrocatalyst for Hydrogen Evolution[J]. Anal. Chem., 2017,89(16):8574-8579. doi: 10.1021/acs.analchem.7b02799
Kucernak A R J, Sundaram V N N. Nickel Phosphide: The Effect of Phosphorus Content on Hydrogen Evolution Activity and Corrosion Resistance in Acidic Medium[J]. J. Mater. Chem. A, 2014,2(41):17435-17445. doi: 10.1039/C4TA03468F
Shen R C, Xie J, Ding Y N, Liu S Y, Adamski A, Chen X B, Li X. Carbon Nanotube-Supported Cu3P as High-Efficiency and Low-Cost Cocatalysts for Exceptional Semiconductor-Free Photocatalytic H2 Evolution[J]. ACS Sustainable Chem. Eng., 2019,7(3):3243-3250. doi: 10.1021/acssuschemeng.8b05185
Shen R C, Xie J, Zhang H D, Zhang A P, Chen X B, Li X. Enhanced Solar Fuel H 2 Generation over g-C3N4 Nanosheet Photocatalysts by the Synergetic Effect of Noble Metal-Free Co2P Cocatalyst and the Environmental Phosphorylation Strategy[J]. ACS Sustainable Chem. Eng., 2018,6(1):816-826. doi: 10.1021/acssuschemeng.7b03169
Yan J C, Ren J, Ren L L, Jian J M, Yang Y, Yang S F, Ren T L. Development of a Portable Setup Using a Miniaturized and High Precision Colorimeter for the Estimation of Phosphate in Natural Water[J]. Anal. Chim. Acta, 2019,1058:70-79. doi: 10.1016/j.aca.2019.01.030
Muthuswamy E, Savithra G H L, Brock S L. Synthetic Levers Enabling Independent Control of Phase, Size, and Morphology in Nickel Phosphide Nanoparticles[J]. ACS Nano, 2011,5(3):2402-2411. doi: 10.1021/nn1033357
Xin X, Wang Y H, Han C, Cui Y H, Xu Y C, Tao Y, Zhang D E, Xu X Y. Porous Flower-like Ni5P4 for Non-enzymatic Electrochemical Detection of Glucose[J]. Mater. Chem. Phys., 2020,240122202. doi: 10.1016/j.matchemphys.2019.122202
Costa D C, Soldati A L, Pecchi G, Bengoa J F, Marchetti S G, Vetere V. Preparation and Characterization of a Supported System of Ni2P/Ni12P5 Nanoparticles and Their Use as the Active Phase in Chemoselective Hydrogenation of Acetophenone[J]. Nanotechnology, 2018,29(21)215702. doi: 10.1088/1361-6528/aab3a8
Pan Y, Liu Y R, Zhao J C, Yang K, Liang J L, Liu D D, Hu W H, Liu D P, Liu Y Q, Liu C G. Monodispersed Nickel Phosphide Nanocrystals with Different Phases: Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution[J]. J. Mater. Chem. A, 2015,3(4):1656-1665. doi: 10.1039/C4TA04867A
Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, Jimenez-Lopez A. A Novel Method for Preparing an Active Nickel Phosphide Catalyst for HDS of Dibenzothiophene[J]. J. Catal., 2009,263(1):4-15. doi: 10.1016/j.jcat.2009.02.013
Liu X G, Li Z Y, Zhang B Q, Hu M C. Improvement of Hydrodeoxygenation Stability of Nickel Phosphide Based Catalysts by Silica Modification as Structural Promoter[J]. Fuel, 2017,204:144-151. doi: 10.1016/j.fuel.2017.05.054
Stern L A, Feng L G, Song F, Hu X L. Ni2P as a Janus Catalyst for Water Splitting: The Oxygen Evolution Activity of Ni2P Nanoparticles[J]. Energy Environ. Sci., 2015,8(8):2347-2351. doi: 10.1039/C5EE01155H
Huang Z P, Chen Z B, Chen Z Z, Lv C C, Meng H, Zhang C. Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis[J]. ACS Nano, 2014,8(8):8121-8129. doi: 10.1021/nn5022204
Wan H Z, Li L, Chen Y, Gong J L, Duan M Q, Liu C, Zhang J, Wang H. One Pot Synthesis of Ni12P5 Hollow Nanocapsules as Efficient Electrode Materials for Oxygen Evolution Reactions and Supercapacitor Applications[J]. Electrochim. Acta, 2017,229:380-386. doi: 10.1016/j.electacta.2017.01.169
Feng X, Zhao Y H, Liu D K, Mo Y S, Liu Y B, Chen X B, Yan W J, Jin X, Chen B X, Duan X Z, Chen D, Yang C H. Towards High Activity of Hydrogen Production from Ammonia Borane over Efficient Non-noble Ni5P4 Catalyst[J]. Int. J. Hydrogen Energy, 2018,43(36):17112-17120. doi: 10.1016/j.ijhydene.2018.07.055
Kenney M J, Gong M, Li Y G, Wu J Z, Feng J, Lanza M, Dai H J. High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation[J]. Science, 2013,342(6160):836-840. doi: 10.1126/science.1241327
Lichterman M F, Carim A I, McDowell M T, Hu S, Gray H B, Brunschwig B S, Lewis N S. Stabilization of n-Cadmium Telluride Photoanodes for Water Oxidation to O2(g) in Aqueous Alkaline Electrolytes Using Amorphous TiO2 Films Formed by Atomic-Layer Deposition[J]. Energy Environ. Sci., 2014,7(10):3334-3337. doi: 10.1039/C4EE01914H
Sharifalhoseini Z, Entezari M H. Enhancement of the Corrosion Protection of Electroless Ni-P Coating by Deposition of Sonosynthesized ZnO Nanoparticles[J]. Appl. Surf. Sci., 2015,351:1060-1068. doi: 10.1016/j.apsusc.2015.06.028
Tian B, Gao W, Zhang X Q, Wu Y Q, Lu G X. Water Splitting over Core-Shell Structural Nanorod CdS@Cr2O3 Catalyst by Inhibition of H2O2 Recombination via Removing Nascent Formed Oxygen Using Perfluorodecalin[J]. Appl. Catal. B, 2018,221:618-625. doi: 10.1016/j.apcatb.2017.09.065
Ning X F, Zhen W L, Wu Y Q, Lu G X. Inhibition of CdS Photocorrosion by Al2O3 Shell for Highly Stable Photocatalytic Overall Water Splitting Under Visible Light Irradiation[J]. Appl. Catal. B, 2018,226:373-383. doi: 10.1016/j.apcatb.2017.12.067
Ning X F, Li J, Yang B J, Zhen W L, Li Z, Tian B, Lu G X. Inhibition of Photocorrosion of CdS via Assembling with Thin Film TiO2 and Removing Formed Oxygen by Artificial Gill for Visible Light Overall Water Splitting[J]. Appl. Catal. B, 2017,212:129-139. doi: 10.1016/j.apcatb.2017.04.074
Zhang X Q, Lu G X, Wu Y Q, Dong J L, Wang C W. TiO2 Protection Layer and Well-Matched Interfaces Enhance the Stability of Cu2ZnSnS4/CdS/TiO2 for Visible Light Driven Water Splitting[J]. Catal. Sci. Technol., 2021,11(16):5505-5517. doi: 10.1039/D1CY00853F
Dong J L, Zhang X Q, Lu G X, Wang C W. Generation of Enhanced Stability of SnO/In(OH)3/InP for Photocatalytic Water Splitting by SnO Protection Layer[J]. Front. Energy, 2021,15(3):710-720. doi: 10.1007/s11708-021-0764-x
Kim H, Lim J, Lee S, Kim H H, Lee C, Lee J, Choi W. Spontaneous Generation of H2O2 and Hydroxyl Radical through O2 Reduction on Copper Phosphide under Ambient Aqueous Condition[J]. Environ. Sci. Technol., 2019,53(5):2918-2925. doi: 10.1021/acs.est.8b06353
Sharon M, Tamizhmani G, Levyclement C, Rioux J. Study of Electrochemical and Photoelectrochemical Properties of Nickel Phosphide Semiconductors[J]. Solar Cells, 1989,26(4):303-312. doi: 10.1016/0379-6787(89)90089-6
Jiaxi Xu , Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049
Shitao Fu , Jianming Zhang , Cancan Cao , Zhihui Wang , Chaoran Qin , Jian Zhang , Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059
Jing SU , Bingrong LI , Yiyan BAI , Wenjuan JI , Haiying YANG , Zhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Geyang Song , Dong Xue , Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030
Xuyang Wang , Jiapei Zhang , Lirui Zhao , Xiaowen Xu , Guizheng Zou , Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065
Endong YANG , Haoze TIAN , Ke ZHANG , Yongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Fei Xie , Chengcheng Yuan , Haiyan Tan , Alireza Z. Moshfegh , Bicheng Zhu , Jiaguo Yu . d带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
Jiaming Xu , Yu Xiang , Weisheng Lin , Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093
Caixia Lin , Zhaojiang Shi , Yi Yu , Jianfeng Yan , Keyin Ye , Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
(a, b) nP/nNi=0.5, (c, d) nP/nNi=1, (e, f) nP/nNi=2, (g, h) nP/nNi=4, (i, j) nP/nNi=6