Citation: Bo YANG, Gong-Xuan LÜ, Xu-Qiang ZHANG, Jian-Tai MA. Nickel Phosphide Corrosion Induced by Water and Corrosion Inhibition[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(7): 1337-1349. doi: 10.11862/CJIC.2022.106 shu

Nickel Phosphide Corrosion Induced by Water and Corrosion Inhibition

  • Corresponding author: Gong-Xuan LÜ, gxlu@lzb.ac.cn
  • Received Date: 28 December 2021
    Revised Date: 30 March 2022

Figures(12)

  • Transition metal phosphides as cocatalysts have been widely used in electrocatalysis, photoelectrocatalysis, and electrochemical energy storage. But its stability in water medium is seldom studied. Nickel phosphide (NixP) was synthesized and the reaction of NixP with H2O was studied in detail. The results showed that serious corrosion of NixP occurred when NixP was dispersed in the water while H2 was generated. At the same time, the corrosion products of PO43- and Ni2+ ions were detected. Such NixP corrosion in water is highly dependent on NixP crystal structure and components. The deposition of NiO, ZnO, and TiO2 metal oxide protective layer on NixP can improve the anticorrosion ability of NixP in the aqueous medium.
  • 加载中
    1. [1]

      YUAN Y M, CHEN H, ZHAO D Y, WU C, GENG J, SHEN J Y. Stability and Activity of Ni2P and NiSx for the Hydrotreating Reactions[J]. J. Mol. Catal.(China), 2021,35(3):263-272.  

    2. [2]

      WANG S S, YU B. Preparation of (NiCo)2P/NF Self-Supporting Electrode and Its Electrocatalytic Water Splitting[J]. J. Mol. Catal.(China), 2020,34(1):81-86.  

    3. [3]

      ZHAO M X, ZHANG T Y, DUAN T T, JIANG L J, YANG X Y, RONG M Z. Research Progress of Selective Oxidation of Alcohols to Aldehydes and Ketones by Electrocatalysis[J]. J. Mol. Catal.(China), 2021,35(6):583-594.  

    4. [4]

      NING Y Y, LI G Y, ZHENG X C, XU C X, ZHOU M, HU Z Q. Research Progress of on Body Enzyme Biofuel Cell[J]. J. Mol. Catal.(China), 2021,35(4):365-374.  

    5. [5]

      Kupka J, Budniok A. Electrolytic Oxygen Evolution on Ni-Co-P Alloys[J]. J. Appl. Electrochem., 1990,20(6):1015-1020. doi: 10.1007/BF01019582

    6. [6]

      Paseka I. Evolution of Hydrogen and Its Sorption on Remarkable Active Amorphous Smooth Ni-P(Ⅹ) Electrodes[J]. Electrochim. Acta, 1995,40(11):1633-1640. doi: 10.1016/0013-4686(95)00077-R

    7. [7]

      Liu P, Rodriguez J A. Catalysts for Hydrogen Evolution from the[NiFe]Hydrogenase to the Ni2P (001) Surface: The Importance of Ensemble Effect[J]. J. Am. Chem. Soc., 2005,127(42):14871-14878. doi: 10.1021/ja0540019

    8. [8]

      Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S, Schaak R E. Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction[J]. J. Am. Chem. Soc., 2013,135(25):9267-9270. doi: 10.1021/ja403440e

    9. [9]

      Xu Y, Wu R, Zhang J F, Shi Y M, Zhang B. Anion-Exchange Synthesis of Nanoporous FeP Nanosheets as Electrocatalysts for Hydrogen Evolution Reaction[J]. Chem. Commun., 2013,49(59):6656-6658. doi: 10.1039/c3cc43107j

    10. [10]

      Laursen A B, Patraju K R, Whitaker M J, Retuerto M, Sarkar T, Yao N, Ramanujachary K V, Greenblatt M, Dismukes G C. Nanocrystal line Ni5P4:A Hydrogen Evolution Electrocatalyst of Exceptional Efficiency in Both Alkaline and Acidic Media[J]. Energy Environ. Sci., 2015,8(3):1027-1034. doi: 10.1039/C4EE02940B

    11. [11]

      Tian J Q, Liu Q, Asiri A M, Sun X P. Self-Supported Nanoporous Cobalt Phosphide Nanowire Arrays: An Efficient 3D Hydrogen-Evolving Cathode over the Wide Range of pH 0-14[J]. J. Am. Chem. Soc., 2014,136(21):7587-7590. doi: 10.1021/ja503372r

    12. [12]

      Ledendecker M, Calderon S K, Papp C, Steinruck H P, Antonietti M, Shalom M. The Synthesis of Nanostructured Ni5P4 Films and Their Use as a Non-Noble Bifunctional Electrocatalyst for Full Water Splitting[J]. Angew. Chem. Int. Ed., 2015,54(42):12361-12365. doi: 10.1002/anie.201502438

    13. [13]

      Ryu J, Jung N, Jang J H, Kim H J, Yoo S J. In Situ Transformation of Hydrogen-Evolving CoP Nanoparticles: Toward Efficient Oxygen Evolution Catalysts Bearing Dispersed Morphologies with Co-Oxo/Hydroxo Molecular Units[J]. ACS Catal., 2015,5(7):4066-4074. doi: 10.1021/acscatal.5b00349

    14. [14]

      Zhang G, Wang G C, Liu Y, Liu H J, Qu J H, Li J H. Highly Active and Stable Catalysts of Phytic Acid-Derivative Transition Metal Phosphides for Full Water Splitting[J]. J. Am. Chem. Soc., 2016,138(44):14686-14693. doi: 10.1021/jacs.6b08491

    15. [15]

      Zhou L, Shao M F, Li J B, Jiang S, Wei M, Duan X. Two-Dimensional Ultrathin Arrays of CoP: Electronic Modulation toward High Performance Overall Water Splitting[J]. Nano Energy, 2017,41:583-590. doi: 10.1016/j.nanoen.2017.10.009

    16. [16]

      Callejas J F, McEnaney J M, Read C G, Crompton J C, Biacchi A J, Popczun E J, Gordon T R, Lewis N S, Schaak R E. Electrocatalytic and Photocatalytic Hydrogen Production from Acidic and Neutral-pH Aqueous Solutions Using Iron Phosphide Nanoparticles[J]. ACS Nano, 2014,8(11):11101-11107. doi: 10.1021/nn5048553

    17. [17]

      Cao S, Chen Y, Hou C C, Lv X J, Fu W F. Cobalt Phosphide as a Highly Active Non-Precious Metal Cocatalyst for Photocatalytic Hydrogen Production under Visible Light Irradiation[J]. J. Mater. Chem. A, 2015,3(11):6096-6101. doi: 10.1039/C4TA07149B

    18. [18]

      Zhen W L, Ning X F, Yang B J, Wu Y Q, Li Z, Lu G X. The Enhancement of CdS Photocatalytic Activity for Water Splitting via Anti-photocorrosion by Coating Ni2P Shell and Removing Nascent Formed Oxygen with Artificial Gill[J]. Appl. Catal. B, 2018,221:243-257. doi: 10.1016/j.apcatb.2017.09.024

    19. [19]

      Tian B, Li Z, Zhen W L, Lu G X. Uniformly Sized (112) Facet Co2P on Graphene for Highly Effective Photocatalytic Hydrogen Evolution[J]. J. Phys. Chem. C, 2016,120(12):6409-6415. doi: 10.1021/acs.jpcc.6b00680

    20. [20]

      Saadi F H, Carim A I, Verlage E, Hemminger J C, Lewis N S, Soriaga M P. CoP as an Acid-Stable Active Electrocatalyst for the HydrogenEvolution Reaction: Electrochemical Synthesis, Interfacial Characterization and Performance Evaluation[J]. J. Phys. Chem. C, 2014,118(50):29294-29300. doi: 10.1021/jp5054452

    21. [21]

      Saadi F H, Carim A I, Drisdell W S, Gul S, Baricuatro J H, Yano J, Soriaga M P, Lewis N S. Operando Spectroscopic Analysis of CoP Films Electrocatalyzing the Hydrogen-Evolution Reaction[J]. J. Am. Chem. Soc., 2017,139(37):12927-12930. doi: 10.1021/jacs.7b07606

    22. [22]

      Ahnt H S, Bard A J. Assessment of the Stability and Operability of Cobalt Phosphide Electrocatalyst for Hydrogen Evolution[J]. Anal. Chem., 2017,89(16):8574-8579. doi: 10.1021/acs.analchem.7b02799

    23. [23]

      Kucernak A R J, Sundaram V N N. Nickel Phosphide: The Effect of Phosphorus Content on Hydrogen Evolution Activity and Corrosion Resistance in Acidic Medium[J]. J. Mater. Chem. A, 2014,2(41):17435-17445. doi: 10.1039/C4TA03468F

    24. [24]

      Shen R C, Xie J, Ding Y N, Liu S Y, Adamski A, Chen X B, Li X. Carbon Nanotube-Supported Cu3P as High-Efficiency and Low-Cost Cocatalysts for Exceptional Semiconductor-Free Photocatalytic H2 Evolution[J]. ACS Sustainable Chem. Eng., 2019,7(3):3243-3250. doi: 10.1021/acssuschemeng.8b05185

    25. [25]

      Shen R C, Xie J, Zhang H D, Zhang A P, Chen X B, Li X. Enhanced Solar Fuel H 2 Generation over g-C3N4 Nanosheet Photocatalysts by the Synergetic Effect of Noble Metal-Free Co2P Cocatalyst and the Environmental Phosphorylation Strategy[J]. ACS Sustainable Chem. Eng., 2018,6(1):816-826. doi: 10.1021/acssuschemeng.7b03169

    26. [26]

      Yan J C, Ren J, Ren L L, Jian J M, Yang Y, Yang S F, Ren T L. Development of a Portable Setup Using a Miniaturized and High Precision Colorimeter for the Estimation of Phosphate in Natural Water[J]. Anal. Chim. Acta, 2019,1058:70-79. doi: 10.1016/j.aca.2019.01.030

    27. [27]

      Muthuswamy E, Savithra G H L, Brock S L. Synthetic Levers Enabling Independent Control of Phase, Size, and Morphology in Nickel Phosphide Nanoparticles[J]. ACS Nano, 2011,5(3):2402-2411. doi: 10.1021/nn1033357

    28. [28]

      Xin X, Wang Y H, Han C, Cui Y H, Xu Y C, Tao Y, Zhang D E, Xu X Y. Porous Flower-like Ni5P4 for Non-enzymatic Electrochemical Detection of Glucose[J]. Mater. Chem. Phys., 2020,240122202. doi: 10.1016/j.matchemphys.2019.122202

    29. [29]

      Costa D C, Soldati A L, Pecchi G, Bengoa J F, Marchetti S G, Vetere V. Preparation and Characterization of a Supported System of Ni2P/Ni12P5 Nanoparticles and Their Use as the Active Phase in Chemoselective Hydrogenation of Acetophenone[J]. Nanotechnology, 2018,29(21)215702. doi: 10.1088/1361-6528/aab3a8

    30. [30]

      Pan Y, Liu Y R, Zhao J C, Yang K, Liang J L, Liu D D, Hu W H, Liu D P, Liu Y Q, Liu C G. Monodispersed Nickel Phosphide Nanocrystals with Different Phases: Synthesis, Characterization and Electrocatalytic Properties for Hydrogen Evolution[J]. J. Mater. Chem. A, 2015,3(4):1656-1665. doi: 10.1039/C4TA04867A

    31. [31]

      Cecilia J A, Infantes-Molina A, Rodriguez-Castellon E, Jimenez-Lopez A. A Novel Method for Preparing an Active Nickel Phosphide Catalyst for HDS of Dibenzothiophene[J]. J. Catal., 2009,263(1):4-15. doi: 10.1016/j.jcat.2009.02.013

    32. [32]

      Liu X G, Li Z Y, Zhang B Q, Hu M C. Improvement of Hydrodeoxygenation Stability of Nickel Phosphide Based Catalysts by Silica Modification as Structural Promoter[J]. Fuel, 2017,204:144-151. doi: 10.1016/j.fuel.2017.05.054

    33. [33]

      Stern L A, Feng L G, Song F, Hu X L. Ni2P as a Janus Catalyst for Water Splitting: The Oxygen Evolution Activity of Ni2P Nanoparticles[J]. Energy Environ. Sci., 2015,8(8):2347-2351. doi: 10.1039/C5EE01155H

    34. [34]

      Huang Z P, Chen Z B, Chen Z Z, Lv C C, Meng H, Zhang C. Ni12P5 Nanoparticles as an Efficient Catalyst for Hydrogen Generation via Electrolysis and Photoelectrolysis[J]. ACS Nano, 2014,8(8):8121-8129. doi: 10.1021/nn5022204

    35. [35]

      Wan H Z, Li L, Chen Y, Gong J L, Duan M Q, Liu C, Zhang J, Wang H. One Pot Synthesis of Ni12P5 Hollow Nanocapsules as Efficient Electrode Materials for Oxygen Evolution Reactions and Supercapacitor Applications[J]. Electrochim. Acta, 2017,229:380-386. doi: 10.1016/j.electacta.2017.01.169

    36. [36]

      Feng X, Zhao Y H, Liu D K, Mo Y S, Liu Y B, Chen X B, Yan W J, Jin X, Chen B X, Duan X Z, Chen D, Yang C H. Towards High Activity of Hydrogen Production from Ammonia Borane over Efficient Non-noble Ni5P4 Catalyst[J]. Int. J. Hydrogen Energy, 2018,43(36):17112-17120. doi: 10.1016/j.ijhydene.2018.07.055

    37. [37]

      Kenney M J, Gong M, Li Y G, Wu J Z, Feng J, Lanza M, Dai H J. High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation[J]. Science, 2013,342(6160):836-840. doi: 10.1126/science.1241327

    38. [38]

      Lichterman M F, Carim A I, McDowell M T, Hu S, Gray H B, Brunschwig B S, Lewis N S. Stabilization of n-Cadmium Telluride Photoanodes for Water Oxidation to O2(g) in Aqueous Alkaline Electrolytes Using Amorphous TiO2 Films Formed by Atomic-Layer Deposition[J]. Energy Environ. Sci., 2014,7(10):3334-3337. doi: 10.1039/C4EE01914H

    39. [39]

      Sharifalhoseini Z, Entezari M H. Enhancement of the Corrosion Protection of Electroless Ni-P Coating by Deposition of Sonosynthesized ZnO Nanoparticles[J]. Appl. Surf. Sci., 2015,351:1060-1068. doi: 10.1016/j.apsusc.2015.06.028

    40. [40]

      Tian B, Gao W, Zhang X Q, Wu Y Q, Lu G X. Water Splitting over Core-Shell Structural Nanorod CdS@Cr2O3 Catalyst by Inhibition of H2O2 Recombination via Removing Nascent Formed Oxygen Using Perfluorodecalin[J]. Appl. Catal. B, 2018,221:618-625. doi: 10.1016/j.apcatb.2017.09.065

    41. [41]

      Ning X F, Zhen W L, Wu Y Q, Lu G X. Inhibition of CdS Photocorrosion by Al2O3 Shell for Highly Stable Photocatalytic Overall Water Splitting Under Visible Light Irradiation[J]. Appl. Catal. B, 2018,226:373-383. doi: 10.1016/j.apcatb.2017.12.067

    42. [42]

      Ning X F, Li J, Yang B J, Zhen W L, Li Z, Tian B, Lu G X. Inhibition of Photocorrosion of CdS via Assembling with Thin Film TiO2 and Removing Formed Oxygen by Artificial Gill for Visible Light Overall Water Splitting[J]. Appl. Catal. B, 2017,212:129-139. doi: 10.1016/j.apcatb.2017.04.074

    43. [43]

      Zhang X Q, Lu G X, Wu Y Q, Dong J L, Wang C W. TiO2 Protection Layer and Well-Matched Interfaces Enhance the Stability of Cu2ZnSnS4/CdS/TiO2 for Visible Light Driven Water Splitting[J]. Catal. Sci. Technol., 2021,11(16):5505-5517. doi: 10.1039/D1CY00853F

    44. [44]

      Dong J L, Zhang X Q, Lu G X, Wang C W. Generation of Enhanced Stability of SnO/In(OH)3/InP for Photocatalytic Water Splitting by SnO Protection Layer[J]. Front. Energy, 2021,15(3):710-720. doi: 10.1007/s11708-021-0764-x

    45. [45]

      Kim H, Lim J, Lee S, Kim H H, Lee C, Lee J, Choi W. Spontaneous Generation of H2O2 and Hydroxyl Radical through O2 Reduction on Copper Phosphide under Ambient Aqueous Condition[J]. Environ. Sci. Technol., 2019,53(5):2918-2925. doi: 10.1021/acs.est.8b06353

    46. [46]

      Sharon M, Tamizhmani G, Levyclement C, Rioux J. Study of Electrochemical and Photoelectrochemical Properties of Nickel Phosphide Semiconductors[J]. Solar Cells, 1989,26(4):303-312. doi: 10.1016/0379-6787(89)90089-6

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    14. [14]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    19. [19]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    20. [20]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

Metrics
  • PDF Downloads(11)
  • Abstract views(1920)
  • HTML views(346)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return