Citation: Bai-Tong NIU, Yan-Hui FENG, Hui-Ling LIAO, Hong-Xu GUO, Shao-Ming YING. Mixed Metal-Organic Frameworks with Supercapacitor Performance Constructed by Succinic Acid[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 951-958. doi: 10.11862/CJIC.2022.104 shu

Mixed Metal-Organic Frameworks with Supercapacitor Performance Constructed by Succinic Acid

  • Corresponding author: Hong-Xu GUO, guohx@mnnu.edu.cn
  • Received Date: 27 October 2021
    Revised Date: 9 March 2022

Figures(8)

  • A mixed metal-organic framework (MOF(Ni, Co)) was synthesized through a simple one-pot solvothermal method, and was characterized through X-ray diffraction, FT-IR, scanning electron microscope, X-ray photoelectron spectroscopy, and N2 adsorption-desorption. The performance of the samples as supercapacitor electrode materials was further studied for the first time. The unique nano-flower -like structure of MOF(Ni1.2Co0.8) provides more electroactive sites and a shorter pathway for electron transfer and electrolyte diffusion, resulting in an excellent electrochemical performance with a high specific capacitance of 850 F·g-1 at 1 A·g-1. At the same time, this work shows that the MOF(Ni) electrode material doped with an appropriate amount of Co can facilitate the electron/ion transportation of the electrode, reduce the contact resistance between active material and electrolyte, increase the electrical conductivity, and enhance the electrochemical performance.
  • 加载中
    1. [1]

      Xu B, Zhang H B, Mei H, Sun D F. Recent Progress in Metal-Organic Framework -Based Supercapacitor Electrode Materials[J]. Coord. Chem. Rev., 2020,420213438. doi: 10.1016/j.ccr.2020.213438

    2. [2]

      Wang K B, Wang Z K, Liu J D, Li C, Mao F F, Wu H, Zhang Q C. Enhancing the Performance of a Battery-Supercapacitor Hybrid Ener-gy Device through Narrowing the Capacitance Difference between Two Electrodes via the Utilization of 2D MOF-Nanosheetderived Ni@Nitrogen -Doped -Carbon Core-Shell Rings as Both Negative and Positive Electrodes[J]. ACS Appl. Mater. Interfaces, 2020,12:47482-47489. doi: 10.1021/acsami.0c12830

    3. [3]

      Bailmare D B, Dhoble S J, Deshmukh A D. Metal Organic Frame-works and Their Derived Materials for Capacity Enhancement of Supercapacitors: Progress and Perspective[J]. Synth. Met., 2021,282116945. doi: 10.1016/j.synthmet.2021.116945

    4. [4]

      Wang C Y, Liu Z Z, Wang Q, Guo J Y, Zhao Q F, Lu Y. MnO2@Poly-pyrrole Composite with Hollow Microsphere Structure for Electrode Material of Supercapacitors[J]. J. Electroanal. Chem., 2021,901115780. doi: 10.1016/j.jelechem.2021.115780

    5. [5]

      Wang K B, Li Q Q, Ren Z J, Li C, Chu Y, Wang Z K, Zhang M D, Wu H, Zhang Q C. 2D Metal-Organic Frameworks (MOFs) for High- Performance Batcap Hybrid Devices[J]. Small, 2020,162001987. doi: 10.1002/smll.202001987

    6. [6]

      Wang K B, Wang S R, Liu J D, Guo Y X, Mao F F, Wu H, Zhang Q C. Fe-Based Coordination Polymers as Battery -Type Electrodes in Semi-Solid-State Battery-Supercapacitor Hybrid Devices[J]. ACS Appl. Mater. Interfaces, 2021,13:15315-15323. doi: 10.1021/acsami.1c01339

    7. [7]

      Wang Y Z, Liu Y X, Wang H Q, Liu W, Li Y, Zhang J F, Hou H, Yang J L. Ultrathin NiCo-MOF Nanosheets for High-Performance Supercapacitor Electrodes[J]. ACS Appl. Energy Mater., 2019,2:2063-2071. doi: 10.1021/acsaem.8b02128

    8. [8]

      Wu X M, Liu M M, Guo H X, Ying S M, Chen Z X. Polyoxovanadate-Based MOFs Microsphere Constructed from 3-D Discrete Nano-Sheets as Supercapacitor[J]. Chin. J. Struct. Chem., 2021,40(8):994-998.

    9. [9]

      Zhu D D, Qiao M, Liu J L, Tao T, Guo C X. Engineering Pristine 2D Metal-Organic Framework Nanosheets for Electrocatalysis[J]. J. Mater. Chem. A, 2020,8:8143-8170. doi: 10.1039/D0TA03138K

    10. [10]

      Schoedel A, Li M, Li D, O'Keeffe M, Yaghi O M. Structures of Metal-Organic Frameworks with Rod Secondary Building Units[J]. Chem. Rev., 2016,116:12466-12535. doi: 10.1021/acs.chemrev.6b00346

    11. [11]

      Fateeva A, Horcajada P, Devic T, Serre C, Marrot J, Greneche J M, Morcrette M, Tarascon J M, Maurin G, Férey G. Synthesis, Structure, Characterization, and Redox Properties of the Porous MIL-68(Fe) Solid[J]. Eur. J. Inorg. Chem., 2010,2010:3789-3794. doi: 10.1002/ejic.201000486

    12. [12]

      Yang J, Zheng C, Xiong P X, Li Y F, Wei M D. Zn-Doped Ni-MOF Material with a High Supercapacitive Performance[J]. J. Mater. Chem. A, 2014,2:19005-19010. doi: 10.1039/C4TA04346D

    13. [13]

      Kazemi S H, Hosseinzadeh B, Kazemi H, Kiani M A, Hajati S. Facile Synthesis of Mixed Metal-Organic Frameworks: Electrode Materials for Supercapacitors with Excellent Areal Capacitance and Operational Stability[J]. ACS Appl. Mater. Interfaces, 2018,10:23063-23073. doi: 10.1021/acsami.8b04502

    14. [14]

      Forster P M, Cheetham A K. Open-Framework Nickel Succinate, [Ni7(C4 H4O4)6(OH)2(H2O) 2] ·2H2O: A New Hybrid Material with Three-Dimensional Ni-O-Ni Connectivity[J]. Angew. Chem. Int. Ed., 2002,41(3):4578-459.

    15. [15]

      Zhu Y X, Zhang Z, Cheng J, Guo H, Yang W J. Ni -BTC Metal -Organic Framework Loaded on MCM-41 to Promote Hydrodeoxygen-ation and Hydrocracking in Jet Biofuel Production[J]. Int. J. Hydrogen Energy, 2021,46:3898-3908. doi: 10.1016/j.ijhydene.2020.10.216

    16. [16]

      Jiang Z, Gao P F, Yang L, Huang C Z, Li Y F. A Facile In Situ Syn-thesis of Silver Nanoparticles on the Surface of Metal Organic Frame-work for Ultrasensitive Sensors Detection of Dopamine[J]. Anal. Chem., 2015,87:12177-12182. doi: 10.1021/acs.analchem.5b03058

    17. [17]

      Arul P, Huang S T, Gowthaman N S K, Mani G, Jeromiyas N, Shankar S, John S A. Electrocatalyst Based on Ni-MOF Intercalated with Amino Acid-Functionalized Graphene Nanoplatelets for the Determination of Endocrine Disruptor Bisphenol A[J]. Anal. Chim. Acta, 2021,1150338228. doi: 10.1016/j.aca.2021.338228

    18. [18]

      Yuan M W, Wang R, Sun Z M, Lin L, Yang H, Li H F, Nan C Y, Sun G B, Ma S L. Morphology -Controlled Synthesis of Ni-MOFs with Highly Enhanced Electrocatalytic Performance for Urea Oxidation[J]. Inorg. Chem., 2019,58:11449-11457. doi: 10.1021/acs.inorgchem.9b01124

    19. [19]

      Niu B T, Zhu M H, Guo H X, Ying S M, Huang X G. Simple Fabrica-tion of a Hexagonal Prisms with Hexagonal Pyramid Tips V2O 5@MOF(V, Co) and Its Application as Electrochemical Sensor for Pb2+[J]. Inorg. Chem. Commun., 2021,133108966. doi: 10.1016/j.inoche.2021.108966

    20. [20]

      Liu Y X, Wang Y Z, Chen Y J, Wang C, Guo L. NiCo -MOF Nanosheets Wrapping Polypyrrole Nanotubes for High-Performance Supercapacitors[J]. Appl. Surf. Sci., 2020,507145089. doi: 10.1016/j.apsusc.2019.145089

    21. [21]

      Zhu Q Z, Li J P, Simon P, Xu B. Two-Dimensional MXenes for Elec-trochemical Capacitor Applications: Progress, Challenges and Per-spectives[J]. Energy Storage Mater., 2021,35:630-660. doi: 10.1016/j.ensm.2020.11.035

    22. [22]

      Qu C, Jiao Y, Zhao B, Chen D C, Zou R Q, Walton K S, Liu M L. Nickel-Based Pillared MOFs for High-Performance Supercapacitors: Design, Synthesis and Stability Study[J]. Nano Energy, 2016,26:66-73. doi: 10.1016/j.nanoen.2016.04.003

    23. [23]

      Xuan W L, Ramachandran R, Zhao C H, Wang F. Influence of Syn-thesis Temperature on Cobalt Metal-Organic Framework (Co -MOF) Formation and Its Electrochemical Performance towards Supercapac-itor Electrodes[J]. J. Solid State Electrochem., 2018,22(12):3873-3881. doi: 10.1007/s10008-018-4096-7

    24. [24]

      Yu H N, Xia H C, Zhang J N, He J, Guo S Y, Xu Q. Fabrication of Fe-Doped Co-MOF with Mesoporous Structure for the Optimization of Supercapacitor Performances[J]. Chin. Chem. Lett., 2018,29:834-836. doi: 10.1016/j.cclet.2018.04.008

    25. [25]

      Rahmanifar M S, Hesari H, Noori A, Masoomi M Y, Morsali A, Mousavi M F. A Dual Ni/Co-MOF-Reduced Graphene Oxide Nano-composite as a High Performance Supercapacitor Electrode Material[J]. Electrochim. Acta, 2018,275:76-86. doi: 10.1016/j.electacta.2018.04.130

    26. [26]

      Gao S W, Sui Y W, Wei F X, Qi J Q, Meng Q K, Ren Y J, He Y Z. Dandelion-like Nickel/Cobalt Metal-Organic Framework Based Elec-trode Materials for High Performance Supercapacitors[J]. J. Colloid Interface Sci., 2018,531:83-90. doi: 10.1016/j.jcis.2018.07.044

  • 加载中
    1. [1]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    4. [4]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    16. [16]

      Junmei FANWei LIURuitao ZHUChenxi QINXiaoling LEIHaotian WANGJiao WANGHongfei HAN . High sensitivity detection of baicalein by N, S co-doped carbon dots and their application in biofluids. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2009-2020. doi: 10.11862/CJIC.20240120

    17. [17]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    18. [18]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    19. [19]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    20. [20]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

Metrics
  • PDF Downloads(1)
  • Abstract views(417)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return