Citation: Yun-Yun WANG, Yu-Ze ZHANG, Jian-Wei WEI, Hui ZENG, Ming ZHAO, Chuan YANG, Wen-Lin FENG, Zeng-Wei MA. First Principles Calculation on Photoelectric Properties of Cs2TiBr6 by Substitution Doping with Cl and Pd[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 884-890. doi: 10.11862/CJIC.2022.102 shu

First Principles Calculation on Photoelectric Properties of Cs2TiBr6 by Substitution Doping with Cl and Pd

  • Corresponding author: Jian-Wei WEI, redskywei@cqut.edu.cn
  • Received Date: 25 December 2021
    Revised Date: 21 March 2022

Figures(5)

  • The all-inorganic lead-free perovskite Cs2TiBr6 has the advantages of good optoelectronic properties, adjustable bandgap, and environmental friendliness. It is a kind of light-absorbing material with great potential. To improve the related properties of Cs2TiBr6, the first-principles-based method was used to study the structure of Pd and Cl doped Cs2TiBr6 perovskite. The results show that the impurity band was generated after replacing Ti with Pd, which transforms the original indirect bandgap Cs2TiBr6 into a direct bandgap material. After doping with 25.0% Pd, the bandgap value of the crystal was reduced by 26%, and the absorption capacity of the doped crystal in the nearultraviolet region of 320-415 nm was enhanced by about 50%. In the infrared and near-infrared regions of 645-900 nm, the light absorption capacity was enhanced by about 134%. On this basis, when Cl was co-doped with 25.0% Pd, Cl doping can reduce the formation energy of Pd by about 9% based on single doping, and the position of Cl doping also affects the photoelectric properties of the material.
  • 加载中
    1. [1]

      Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C. Photovoltaic Materials: Present Efficiencies and Future Challenges[J]. Science, 2016,352(6283)aad4424. doi: 10.1126/science.aad4424

    2. [2]

      Zou C N, Zhao Q, Zhang G S, Xiong B. Energy Revolution: From a Fossil Energy Era to a New Energy Era[J]. Nat. Gas Ind. B, 2016,3(1):1-11. doi: 10.1016/j.ngib.2016.02.001

    3. [3]

      CHAI L, ZHONG M. Recent Research Progress in Perovskite Solar Cells[J]. Acta Phys. Sin., 2016,65(23)237902. doi: 10.7498/aps.65.237902

    4. [4]

      Kojima A, Teshima K, Shirai Y, Shirai Y, Miyasaka T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    5. [5]

      Lin R X, Xu J, Wei M Y, Wang Y R, Qin Z Y, Zhou L, Wu J L, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L D, Zhang C F, Sargent E H, Tan H. All-Perovskite Tandem Solar Cells with Improved Grain Surface Passivation[J]. Nature, 2022,603:73-78. doi: 10.1038/s41586-021-04372-8

    6. [6]

      Qin X J, Zhao Z G, Wang Y D, Wu J B, Jiang Q, You J B. Recent Progress in Stability of Perovskite Solar Cells[J]. J. Semicond., 2017,38(1)011002. doi: 10.1088/1674-4926/38/1/011002

    7. [7]

      Li Y F, Zhang C H, Zhang X X, Huang D, Shen Q, Cheng Y C, Huang W. Intrinsic Point Defects in Inorganic Perovskite CsPbI3 from First-Principles Prediction[J]. Appl. Phys. Lett., 2017,111(16)162106. doi: 10.1063/1.5001535

    8. [8]

      Theofylaktos L, Kosmatos K O, Giannakaki E, Kourti H, Deligiannis D, Konstantakou M, Stergiopoulos T. Perovskites with d-Block Metals for Solar Energy Applications[J]. Dalton Trans., 2019,48(26):9516-9537. doi: 10.1039/C9DT01485C

    9. [9]

      Kour R, Arya S, Verma S, Gupta J, Bandhoria P, Bharti V, Datt R, Gupta V. Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review[J]. Global Challenges, 2019,3(11)1900050. doi: 10.1002/gch2.201900050

    10. [10]

      Li X T, Wu J B, Wang S H, Qi Y B. Progress of All-Inorganic Cesium Lead-Free Perovskite Solar Cells[J]. Chem. Lett., 2019,48(8):989-1005. doi: 10.1246/cl.190270

    11. [11]

      Zhang X Y, Ma Q W, Li R P, Lin C Q, Huang D, Chen Y C. The Mechanism of Alkali Doping in CsPbBr3: A First-Principles Perspective[J]. J. Appl. Phys., 2021,129(16)165110. doi: 10.1063/5.0048067

    12. [12]

      Lee B, Stoumpos C C, Zhou N J, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G, Chang R P H. Air-Stable Molecular Semiconducting Iodosalts for Solar Cell Applications: Cs2SnI6 as a Hole Conductor[J]. J. Am. Chem. Soc., 2014,136(43):15379-15385. doi: 10.1021/ja508464w

    13. [13]

      Igbari F, Wang Z K, Liao L S. Progress of Lead-Free Halide Double Perovskites[J]. Adv. Energy Mater., 2019,9(12)1803150. doi: 10.1002/aenm.201803150

    14. [14]

      Xiao Z W, Song Z N, Yan Y F. From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives[J]. Adv. Mater., 2019,31(47)1803792. doi: 10.1002/adma.201803792

    15. [15]

      Li R P, Wang R, Yuan Y, Ding J X, Cheng Y C, Zhang Z M, Huang W. Defect Origin of Emission in CsCu2I3 and Pressure-Induced Anomalous Enhancement[J]. J. Phys. Chem. Lett., 2021,12(1):317-323. doi: 10.1021/acs.jpclett.0c03432

    16. [16]

      Smith B. Infrared Spectral Interpretation: A Systematic Approach. Boca Raton: CRC press, 1998: 288

    17. [17]

      Yan H J, Li Y F, Li X, Wang B X, Li M C. Hot Carrier Relaxation in Cs2TiIyBr6-y (y=0, 2 and 6) by a Time-Domain Ab Initio Study[J]. RSC Adv., 2020,10(2):958-964. doi: 10.1039/C9RA06731K

    18. [18]

      Chen M, Ju M G, Carl A D, Zong Y X, Grimm R L, Gu J J, Zeng X C, Zhou Y Y, Padture N P. Cesium Titanium(Ⅳ) Bromide Thin Films based Stable Lead-Free Perovskite Solar Cells[J]. Joule, 2018,2(3):558-570. doi: 10.1016/j.joule.2018.01.009

    19. [19]

      Ju M G, Chen M, Zhou Y Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C. Earth-Abundant Nontoxic Titanium (Ⅳ)-Based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications[J]. ACS Energy Lett., 2018,3(2):297-304. doi: 10.1021/acsenergylett.7b01167

    20. [20]

      Liu D W, Sa R J. Theoretical Study of Zr Doping on the Stability, Mechanical, Electronic and Optical Properties of Cs2TiI6[J]. Opt. Mater, 2020,110110497. doi: 10.1016/j.optmat.2020.110497

    21. [21]

      Kaewmeechai C, Laosiritaworn Y, Jaroenjittichai A P. DFT Calculation on Electronic Properties of Vacancy-Ordered Double Perovskites Cs2(Ti, Zr, Hf)X6 and Their Alloys: Potential as Light Absorbers in Solar Cells[J]. Results Phys., 2021,30104875. doi: 10.1016/j.rinp.2021.104875

    22. [22]

      Qiao L, Fang W H, Long R. Dopants Control of Electron-Hole Recombination in Cesium-Titanium Halide Double Perovskite by Time Domain Ab Initio Simulation: Co-doping Supersedes Mono-doping[J]. J. Phys. Chem. Lett., 2018,9(23):6907-6914. doi: 10.1021/acs.jpclett.8b03356

    23. [23]

      Kresse G, Furthmüller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Phys. Rev. B, 1996,54(16)11169. doi: 10.1103/PhysRevB.54.11169

    24. [24]

      Wang V, Xu N, Liu J C, Tang G, Geng W T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code[J]. Comput. Phys. Commun., 2021108033.

    25. [25]

      Rizwan M, Ali A, Usman Z, Khalid N R, Jin H B, Cao C B. Structural, Electronic and Optical Properties of Copper-Doped SrTiO3 Perovskite: A DFT Study[J]. Condens. Matter., 2019,552:52-57.

    26. [26]

      Kong D Y, Cheng D L, Wang X W, Zhang K Y, Wang H C, Liu K, Li H L, Sheng X, Yin L. Solution Processed Lead-Free Cesium Titanium Halide Perovskites and Their Structural, Thermal and Optical Characteristics[J]. J. Mater. Chem. C, 2020,8(5):1591-1597. doi: 10.1039/C9TC05711K

  • 加载中
    1. [1]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    8. [8]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    9. [9]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    10. [10]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    14. [14]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    17. [17]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    18. [18]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    19. [19]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(8)
  • Abstract views(1009)
  • HTML views(240)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return