Citation: Yun-Yun WANG, Yu-Ze ZHANG, Jian-Wei WEI, Hui ZENG, Ming ZHAO, Chuan YANG, Wen-Lin FENG, Zeng-Wei MA. First Principles Calculation on Photoelectric Properties of Cs2TiBr6 by Substitution Doping with Cl and Pd[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 884-890. doi: 10.11862/CJIC.2022.102 shu

First Principles Calculation on Photoelectric Properties of Cs2TiBr6 by Substitution Doping with Cl and Pd

  • Corresponding author: Jian-Wei WEI, redskywei@cqut.edu.cn
  • Received Date: 25 December 2021
    Revised Date: 21 March 2022

Figures(5)

  • The all-inorganic lead-free perovskite Cs2TiBr6 has the advantages of good optoelectronic properties, adjustable bandgap, and environmental friendliness. It is a kind of light-absorbing material with great potential. To improve the related properties of Cs2TiBr6, the first-principles-based method was used to study the structure of Pd and Cl doped Cs2TiBr6 perovskite. The results show that the impurity band was generated after replacing Ti with Pd, which transforms the original indirect bandgap Cs2TiBr6 into a direct bandgap material. After doping with 25.0% Pd, the bandgap value of the crystal was reduced by 26%, and the absorption capacity of the doped crystal in the nearultraviolet region of 320-415 nm was enhanced by about 50%. In the infrared and near-infrared regions of 645-900 nm, the light absorption capacity was enhanced by about 134%. On this basis, when Cl was co-doped with 25.0% Pd, Cl doping can reduce the formation energy of Pd by about 9% based on single doping, and the position of Cl doping also affects the photoelectric properties of the material.
  • 加载中
    1. [1]

      Polman A, Knight M, Garnett E C, Ehrler B, Sinke W C. Photovoltaic Materials: Present Efficiencies and Future Challenges[J]. Science, 2016,352(6283)aad4424. doi: 10.1126/science.aad4424

    2. [2]

      Zou C N, Zhao Q, Zhang G S, Xiong B. Energy Revolution: From a Fossil Energy Era to a New Energy Era[J]. Nat. Gas Ind. B, 2016,3(1):1-11. doi: 10.1016/j.ngib.2016.02.001

    3. [3]

      CHAI L, ZHONG M. Recent Research Progress in Perovskite Solar Cells[J]. Acta Phys. Sin., 2016,65(23)237902. doi: 10.7498/aps.65.237902

    4. [4]

      Kojima A, Teshima K, Shirai Y, Shirai Y, Miyasaka T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051. doi: 10.1021/ja809598r

    5. [5]

      Lin R X, Xu J, Wei M Y, Wang Y R, Qin Z Y, Zhou L, Wu J L, Xiao K, Chen B, Park S M, Chen G, Atapattu H R, Graham K R, Xu J, Zhu J, Li L D, Zhang C F, Sargent E H, Tan H. All-Perovskite Tandem Solar Cells with Improved Grain Surface Passivation[J]. Nature, 2022,603:73-78. doi: 10.1038/s41586-021-04372-8

    6. [6]

      Qin X J, Zhao Z G, Wang Y D, Wu J B, Jiang Q, You J B. Recent Progress in Stability of Perovskite Solar Cells[J]. J. Semicond., 2017,38(1)011002. doi: 10.1088/1674-4926/38/1/011002

    7. [7]

      Li Y F, Zhang C H, Zhang X X, Huang D, Shen Q, Cheng Y C, Huang W. Intrinsic Point Defects in Inorganic Perovskite CsPbI3 from First-Principles Prediction[J]. Appl. Phys. Lett., 2017,111(16)162106. doi: 10.1063/1.5001535

    8. [8]

      Theofylaktos L, Kosmatos K O, Giannakaki E, Kourti H, Deligiannis D, Konstantakou M, Stergiopoulos T. Perovskites with d-Block Metals for Solar Energy Applications[J]. Dalton Trans., 2019,48(26):9516-9537. doi: 10.1039/C9DT01485C

    9. [9]

      Kour R, Arya S, Verma S, Gupta J, Bandhoria P, Bharti V, Datt R, Gupta V. Potential Substitutes for Replacement of Lead in Perovskite Solar Cells: A Review[J]. Global Challenges, 2019,3(11)1900050. doi: 10.1002/gch2.201900050

    10. [10]

      Li X T, Wu J B, Wang S H, Qi Y B. Progress of All-Inorganic Cesium Lead-Free Perovskite Solar Cells[J]. Chem. Lett., 2019,48(8):989-1005. doi: 10.1246/cl.190270

    11. [11]

      Zhang X Y, Ma Q W, Li R P, Lin C Q, Huang D, Chen Y C. The Mechanism of Alkali Doping in CsPbBr3: A First-Principles Perspective[J]. J. Appl. Phys., 2021,129(16)165110. doi: 10.1063/5.0048067

    12. [12]

      Lee B, Stoumpos C C, Zhou N J, Hao F, Malliakas C, Yeh C Y, Marks T J, Kanatzidis M G, Chang R P H. Air-Stable Molecular Semiconducting Iodosalts for Solar Cell Applications: Cs2SnI6 as a Hole Conductor[J]. J. Am. Chem. Soc., 2014,136(43):15379-15385. doi: 10.1021/ja508464w

    13. [13]

      Igbari F, Wang Z K, Liao L S. Progress of Lead-Free Halide Double Perovskites[J]. Adv. Energy Mater., 2019,9(12)1803150. doi: 10.1002/aenm.201803150

    14. [14]

      Xiao Z W, Song Z N, Yan Y F. From Lead Halide Perovskites to Lead-Free Metal Halide Perovskites and Perovskite Derivatives[J]. Adv. Mater., 2019,31(47)1803792. doi: 10.1002/adma.201803792

    15. [15]

      Li R P, Wang R, Yuan Y, Ding J X, Cheng Y C, Zhang Z M, Huang W. Defect Origin of Emission in CsCu2I3 and Pressure-Induced Anomalous Enhancement[J]. J. Phys. Chem. Lett., 2021,12(1):317-323. doi: 10.1021/acs.jpclett.0c03432

    16. [16]

      Smith B. Infrared Spectral Interpretation: A Systematic Approach. Boca Raton: CRC press, 1998: 288

    17. [17]

      Yan H J, Li Y F, Li X, Wang B X, Li M C. Hot Carrier Relaxation in Cs2TiIyBr6-y (y=0, 2 and 6) by a Time-Domain Ab Initio Study[J]. RSC Adv., 2020,10(2):958-964. doi: 10.1039/C9RA06731K

    18. [18]

      Chen M, Ju M G, Carl A D, Zong Y X, Grimm R L, Gu J J, Zeng X C, Zhou Y Y, Padture N P. Cesium Titanium(Ⅳ) Bromide Thin Films based Stable Lead-Free Perovskite Solar Cells[J]. Joule, 2018,2(3):558-570. doi: 10.1016/j.joule.2018.01.009

    19. [19]

      Ju M G, Chen M, Zhou Y Y, Garces H F, Dai J, Ma L, Padture N P, Zeng X C. Earth-Abundant Nontoxic Titanium (Ⅳ)-Based Vacancy-Ordered Double Perovskite Halides with Tunable 1.0 to 1.8 eV Bandgaps for Photovoltaic Applications[J]. ACS Energy Lett., 2018,3(2):297-304. doi: 10.1021/acsenergylett.7b01167

    20. [20]

      Liu D W, Sa R J. Theoretical Study of Zr Doping on the Stability, Mechanical, Electronic and Optical Properties of Cs2TiI6[J]. Opt. Mater, 2020,110110497. doi: 10.1016/j.optmat.2020.110497

    21. [21]

      Kaewmeechai C, Laosiritaworn Y, Jaroenjittichai A P. DFT Calculation on Electronic Properties of Vacancy-Ordered Double Perovskites Cs2(Ti, Zr, Hf)X6 and Their Alloys: Potential as Light Absorbers in Solar Cells[J]. Results Phys., 2021,30104875. doi: 10.1016/j.rinp.2021.104875

    22. [22]

      Qiao L, Fang W H, Long R. Dopants Control of Electron-Hole Recombination in Cesium-Titanium Halide Double Perovskite by Time Domain Ab Initio Simulation: Co-doping Supersedes Mono-doping[J]. J. Phys. Chem. Lett., 2018,9(23):6907-6914. doi: 10.1021/acs.jpclett.8b03356

    23. [23]

      Kresse G, Furthmüller J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set[J]. Phys. Rev. B, 1996,54(16)11169. doi: 10.1103/PhysRevB.54.11169

    24. [24]

      Wang V, Xu N, Liu J C, Tang G, Geng W T. VASPKIT: A User-Friendly Interface Facilitating High-Throughput Computing and Analysis Using VASP Code[J]. Comput. Phys. Commun., 2021108033.

    25. [25]

      Rizwan M, Ali A, Usman Z, Khalid N R, Jin H B, Cao C B. Structural, Electronic and Optical Properties of Copper-Doped SrTiO3 Perovskite: A DFT Study[J]. Condens. Matter., 2019,552:52-57.

    26. [26]

      Kong D Y, Cheng D L, Wang X W, Zhang K Y, Wang H C, Liu K, Li H L, Sheng X, Yin L. Solution Processed Lead-Free Cesium Titanium Halide Perovskites and Their Structural, Thermal and Optical Characteristics[J]. J. Mater. Chem. C, 2020,8(5):1591-1597. doi: 10.1039/C9TC05711K

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    10. [10]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    11. [11]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    15. [15]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(8)
  • Abstract views(710)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return