Citation: Xiao-Lin GUAN, Yuan-Yuan DING, Shou-Jun LAI, Xue-Qin YANG, Jing-Yu WEI, Jia-Ming ZHANG, Li-Yuan ZHANG, Jin-Hui TONG, Zi-Qiang LEI. Ultra-small Size Rare Earth Complex Fluorescent Nanoprobe for Dual Color Imaging of Tumor Cells Constructed with PCL-b-PNIPAM Coordinated Eu(Ⅲ)[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(6): 1023-1036. doi: 10.11862/CJIC.2022.097 shu

Ultra-small Size Rare Earth Complex Fluorescent Nanoprobe for Dual Color Imaging of Tumor Cells Constructed with PCL-b-PNIPAM Coordinated Eu(Ⅲ)

  • Corresponding author: Xiao-Lin GUAN, guanxiaolin@nwnu.edu.cn
  • Received Date: 30 August 2021
    Revised Date: 24 February 2022

Figures(6)

  • Three amphiphilic block copolymers 1s-TPE-PCL-b-PNIPAM, 2s-TPE-PCL-b-PNIPAM, and 4s-TPE-PCL -b-PNIPAM (PCL=polycaprolactone, PNIPAM=poly(N - isopropylacrylamide)) were synthesized by in situ polymerization with tetraphenylethylene (TPE) fluorescent small molecules as the center. Then, the rare earth element Eu(Ⅲ) was coordinated with the hydrophilic fragment PNIPAM to synthesize block copolymer-Eu(Ⅲ) complexes (1s-TPE-PCL-b-PNIPAM-Eu(Ⅲ) for one-arm, 2s-TPE-PCL-b -PNIPAM-Eu(Ⅲ) for two-arm, and 4s-TPE-PCL-b-PNIPAM-Eu(Ⅲ) for four-arm). Finally, non-semiconductor polymer dots (Pdots) were prepared by self-assembly of the complexes in water. The three kinds of Pdots had excellent water solubility and ultra-small particle size below 5 nm (average particle sizes were 4.8, 4.3, and 2.7 nm, respectively). The optical test results showed that the single, double, and fourarm Pdots mainly emitted blue light at 430 nm under the excitation of 360 nm, and exhibited excellent aggregation-induced emission characteristics. At 395 nm, the red emission was mainly at 615 nm, and there had little mutual interference because of blue-red emission wavelength spacing was as high as 195 nm, showing excellent double fluorescence properties. The four-arm Pdots aqueous solution had a wider range of color changes and a better double fluorescence effect. In addition, the lower critical solution temperatures (LCSTs) of the three Pdots were 32, 36, and 37 ℃, respectively. While the LCSTs of the four -arm Pdots were closer to the normal body temperature. At the same time, the conformation of the PNIPAM chain in Pdots changed from expansion state to contraction state along with the increase of temperature. As a result, the aggregation degree of TPE on the chain was enhanced, which caused the temperature response of Pdots aqueous solution fluorescence. Ultimately, cytotoxicity and cell imaging studies showed that the three Pdots had low cytotoxicity and could enter HeLa, A549, and HepG2 tumor cells by endocytosis. Under different excitation wavelengths, strong blue or red fluorescence signals could be received in the cells, exhibiting blue/red dual-color fluorescence imaging ability and reversible dual-color fluorescence switching function. In addition, the comparison of the three Pdots found that the four-arm Pdots had the smallest particle size, the best dual fluorescence performance, and the best cell imaging effect.
  • 加载中
    1. [1]

      Li H Y, Wang C F, Hou T, Li F. Amphiphile - Mediated Ultrasmall Aggregation Induced Emission Dots for Ultrasensitive Fluorescence Biosensing[J]. Anal. Chem., 2017,89(17):9100-9107. doi: 10.1021/acs.analchem.7b01797

    2. [2]

      Wang X, Li P, Ding Q, Wu C C, Zhang W, Tang B. Observation of Acetylcholinesterase in Stress - Induced Depression Phenotypes by Two-Photon Fluorescence Imaging in the Mouse Brain[J]. J. Am. Chem. Soc., 2019,141(5):2061-2068. doi: 10.1021/jacs.8b11414

    3. [3]

      Meng F F, Wang J P, Ping Q N, Yeo Y. Quantitative Assessment of Nanoparticle Biodistribution by Fluorescence Imaging, Revisited[J]. ACS Nano, 2018,12(7):6458-6468. doi: 10.1021/acsnano.8b02881

    4. [4]

      ZHOU M X, REN N, ZHANG J J. Four Rare Earth Complexes with Chlorinated Carboxylic Acids and Bipyridine Ligands: Crystal Structures, Thermal Analysis and Luminescence Properties[J]. Chinese J. Inorg. Chem., 2020,36(12):2349-2358. doi: 10.11862/CJIC.2020.258 

    5. [5]

      Qiao G X, Lai Z J, Gao J W, Liu W Q, Zheng Y H. Lanthanide Molecular Model Triggers Sequential Sensing Performance[J]. J. Mol. Liq., 2020,311113344. doi: 10.1016/j.molliq.2020.113344

    6. [6]

      Cota L, Marturano V, Tylkowski B. Ln Complexes as Double Faced Agents: Study of Antibacterial and Antifungal Activity[J]. Coord. Chem. Rev., 2019,396:49-71. doi: 10.1016/j.ccr.2019.05.019

    7. [7]

      ZHANG Q R, DENG R P, LIU Y B, ZHOU L, ZHANG H J. Near Infrared Luminescence Properties of the Complexes of ErxYb1-x(TPB)3Bath (x= 0, 0.218, 0.799, 0.896, 0.987, 1)[J]. Chinese J. Inorg. Chem., 2017,33(11):2011-2016. doi: 10.11862/CJIC.2017.254 

    8. [8]

      Li G D, Wu C, Ma D L, Leunga C. Drug Screening Strategies Using Metal - Based Luminescent Probes[J]. Trac - Trends Anal. Chem., 2021,139:116270-116287. doi: 10.1016/j.trac.2021.116270

    9. [9]

      Zhou R H, Li Y J, Xiao D X, Li T, Zhang T, Fu W, Lin Y F. Hyaluronan-Directed Fabrication of Co - doped Hydroxyapatite as a Dual - Modal Probe for Tumor-Specific Bioimaging[J]. J. Mater. Chem. B, 2020,8:2107-2114. doi: 10.1039/C9TB02787D

    10. [10]

      Sava Gallis D F, Rohwer L E S, Rodriguez M A, Barnhart-Dailey M C, Butler K S, Luk T S, Timlin J A, Chapman K W. Multifunctional, Tunable Metal - Organic Framework Materials Platform for Bioimaging Applications[J]. ACS Appl. Mater. Interfaces, 2017,9(27):22268-22277. doi: 10.1021/acsami.7b05859

    11. [11]

      Zhu Y J, Guo Y J, Liu M D, Wei L B, Wang X T. An Oroxylin A - Loaded Aggregation - Induced Emission Active Polymeric System Greatly Increased the Antitumor Efficacy Against Squamous Cell Carcinoma[J]. J. Mater. Chem. B, 2020,8(10):2040-2047. doi: 10.1039/C9TB01818B

    12. [12]

      Wang Z Y, Wang C, Gan Q, Cao Y, Yuan H, Hua D B. Donor-Acceptor-Type Conjugated Polymer - Based Multicolored Drug Carriers with Tunable Aggregation-Induced Emission Behavior for Self-Illuminat-ing Cancer Therapy[J]. ACS Appl. Mater. Interfaces, 2019,11(45):41853-41861. doi: 10.1021/acsami.9b11237

    13. [13]

      Tsai W K, Chan Y H. Semiconducting Polymer Dots as Near - Infrared Fluorescent Probes for Bioimaging and Sensing[J]. J. Chin. Chem. Soc., 2019,66(1):9-20. doi: 10.1002/jccs.201800322

    14. [14]

      Han L, Liu S G, Zhang X F, Tao B X, Li N B, Luo H Q. A Sensitive Polymer Dots-Manganese Dioxide Fluorescent Nanosensor for "Turn-On" Detection of Glutathione in Human Serum[J]. Sens. Actuators B, 2018,258:25-31. doi: 10.1016/j.snb.2017.11.056

    15. [15]

      Chen H B, Fang X F, Jin Y, Hu X, Yin M, Men X J, Chen N, Fan C H, Chiu D, Wan Y Z, Wu C F. Semiconducting Polymer Nanocavities: Porogenic Synthesis, Tunable Host - Guest Interactions, and Enhanced Drug/siRNA Delivery[J]. Small, 2018,14(21)1800239. doi: 10.1002/smll.201800239

    16. [16]

      Fang X F, Ju B, Liu Z H, Wang F, Xi G, Sun Z Z, Chen H B, Sui C X, Wang M X, Wu C F. Compact Conjugated Polymer Dots with Covalently Incorporated Metalloporphyrins for Hypoxia Bioimaging[J]. ChemBioChem, 2019,20(4):521-525. doi: 10.1002/cbic.201800438

    17. [17]

      Yu J B, Rong Y, Kuo C T, Zhou X H, Chiu D. Recent Advances in the Development of Highly Luminescent Semiconducting Polymer Dots and Nanoparticles for Biological Imaging and Medicine[J]. Anal. Chem., 2017,89(1):42-56. doi: 10.1021/acs.analchem.6b04672

    18. [18]

      Zhang Z, Yuan Y, Liu Z H, Chen H B, Chen D D, Fang X F, Zheng J, Qin W P, Wu C F. Brightness Enhancement of Near - Infrared Semiconducting Polymer Dots for In Vivo Whole-Body Cell Tracking in Deep Organs[J]. ACS Appl. Mater. Interfaces, 2018,10(32):26928-26935. doi: 10.1021/acsami.8b08735

    19. [19]

      Tsai W K, Wang C I, Liao C H, Yao C N, Kuo T J, Liu M H, Hsu C P, Lin S Y, Wu C Y, Pyle J, Chen J X, Chan Y H. Molecular Design of Near-Infrared Fluorescent Pdots for Tumor Targeting: Aggregation-Induced Emission versus Anti - aggregation - Caused Quenching[J]. Chem. Sci., 2019,10(1):198-207. doi: 10.1039/C8SC03510E

    20. [20]

      Yuan Y, Hou W Y, Sun Z Z, Liu J, Ma N, Li X S, Yin S Y, Qin W P, Wu C F. Measuring Cellular Uptake of Polymer Dots for Quantitative Imaging and Photodynamic Therapy[J]. Anal. Chem., 2021,93(18):7071-7078. doi: 10.1021/acs.analchem.1c00548

    21. [21]

      Yan L L, Zhang Y, Xu B, Tian W J. Fluorescent Nanoparticles Based on AIE Fluorogens for Bioimaging[J]. Nanoscale,, 2016,8(5):2471-2487. doi: 10.1039/C5NR05051K

    22. [22]

      Zhang Y, Chen Y J, Li X, Zhang J B, Chen J L, Xu B, Fu X Q, Tian W J. Folic Acid - Functionalized AIE Pdots Based on Amphiphilic PCL - b - PEG for Targeted Cell Imaging[J]. Polym. Chem., 2014,5(12):3824-3830. doi: 10.1039/C4PY00075G

    23. [23]

      Liu Y Z, Mao L C, Yang S J, Liu M Y, Huang H Y, Wen Y Q, Deng F J, Li Y X, Zhang X Y, Wei Y. Synthesis and Biological Imaging of Fluorescent Polymeric Nanoparticles with AIE Feature via the Combination of RAFT Polymerization and Post-polymerization Modifica-tion[J]. Dyes Pigm., 2018,158:79-87. doi: 10.1016/j.dyepig.2018.05.032

    24. [24]

      Zhang X Q, Liu M Y, Yang B, Zhang X Y, Chi Z G, Liu S W, Xu J R, Wei Y. Cross-Linkable Aggregation Induced Emission Dye Based Red Fluorescent Organic Nanoparticles and Their Cell Imaging Applications[J]. Polym. Chem., 2013,4(19):5060-5064. doi: 10.1039/c3py00860f

    25. [25]

      Li J C, Rao J H, Pu K Y. Recent Progress on Semiconducting Polymer Nanoparticles for Molecular Imaging and Cancer Phototherapy[J]. Biomaterials, 2018,155:217-235. doi: 10.1016/j.biomaterials.2017.11.025

    26. [26]

      Palner M, Pu K, Shao S, Rao J H. Semiconducting Polymer Nanoparticles with Persistent Near - Infrared Luminescence Show Potential for In Vivo Optical Imaging[J]. Angew. Chem. Int. Ed., 2015,54(39):11477-11480. doi: 10.1002/anie.201502736

    27. [27]

      GUAN X L, LI Z F, WANG L, LIU M N, WANG K L, YANG X Q, LI Y L, HU L L, ZHAO X L, LAI S J, LEI Z Q. Preparation of AIE Polymer Dots (Pdots) Based on Poly(N - vinyl - 2 - pyrrolidone) - Eu(Ⅲ) Complex and Dual-color Live Cell Imaging[J]. Acta Chim. Sinica, 2019,77(12):1268-1278.  

    28. [28]

      Guan X L, Lu B C, Jin Q J, Li Z F, Wang L, Wang K L, Lai S J, Lei Z Q. AIE-Active Fluorescent Nonconjugated Polymer Dots for Dual-Alternating-Color Live Cell Imaging[J]. Ind. Eng. Chem. Res., 2018,57(44):14889-14898. doi: 10.1021/acs.iecr.8b03776

    29. [29]

      Guan W J, Zhou W J, Lu C, Tang B Z. Synthesis and Design of Aggregation - Induced Emission Surfactants: Direct Observation of Micelle Transitions and Microemulsion Droplets[J]. Angew. Chem. Int. Ed., 2015,54(50):15160-15164. doi: 10.1002/anie.201507236

    30. [30]

      CAI Y, CHEN M Q, JI H N, HUANG X H, SHEN J. Synthesis and Spectroscopic Studies of Eu(Ⅲ) Complex with Poly(N-vinyl acetamide)[J]. Acta Polym. Sin., 2003,4(4):599-602.  

    31. [31]

      Cui G H, Bai Y, Li W L, Gao Z G, Chen S Y, Qiu N N, Satoh T, Kakuchi T, Duan Q. Synthesis and Characterization of Eu(Ⅲ)-Based Coordination Complexes of Modified D - Glucosamine and Poly(N - isopropylacrylamide)[J]. Opt. Mater., 2017,72:115-121. doi: 10.1016/j.optmat.2017.05.051

    32. [32]

      Sabbatini L, Malitesta C, Giglio E, Losito I, Torsi L, Zambonin P. Electrosynthesised Thin Polymer Films: The Role of XPS in the Design of Application Oriented Innovative Materials[J]. J. Electron. Spectrosc. Relat. Phenom., 1999,100(1):35-53.

    33. [33]

      Wang Y J, Jiang H L. Eu(Ⅲ) Modifies the Properties of Poly(N-isopro-pylacrylamide)[J]. Mater. Lett., 2007,61(13):2779-2782. doi: 10.1016/j.matlet.2006.10.055

    34. [34]

      Zhong W B, Zeng X Y, Chen J, Hong Y X, Xiao L H, Zhang P S. Photoswitchable Fluorescent Polymeric Nanoparticles for Rewritable Fluorescence Patterning and Intracellular Dual - Color Imaging with AIE-based Fluorogens as FRET Donors[J]. Polym. Chem., 2017,8(33):4849-4855. doi: 10.1039/C7PY00834A

    35. [35]

      Zhou P, Li G Y, Shao Z Z, Pan X Y, Yu T Y. Structure of Bombyx Mori Silk Fibroin Based on the DFT Chemical Shift Calculation[J]. J. Phys. Chem. B, 2001,105(50):12469-12376. doi: 10.1021/jp0125395

    36. [36]

      Grüll H, Langereis S. Hyperthermia - Triggered Drug Delivery from Temperature-Sensitive Liposomes Using MRI-Guided High Intensity Focused Ultrasound[J]. J. Control. Release, 2012,161(2):317-327. doi: 10.1016/j.jconrel.2012.04.041

    37. [37]

      Wang W, Gao C Q, Qu Y Q, Song Z F, Zhang W Q. In Situ Synthesis of Thermoresponsive Polystyrene- b-poly(N -isopropylacrylamide)-b-polystyrene Nanospheres and Comparative Study of the Looped and Linear Poly(N - isopropylacrylamide)s[J]. Macromolecules, 2016,49(7):2772-2781. doi: 10.1021/acs.macromol.6b00233

    38. [38]

      Adelsberger J, Kulkarni A, Jain A, Wang W N, Bivigou-Koumba A, Busch P, Pipich V, Holderer O, Hellweg T, Laschewsky A, Müller-Buschbaum P, Papadakis C. Thermoresponsive PS-b-PNIPAM-b-PS Micelles: Aggregation Behavior, Segmental Dynamics, and Thermal Response[J]. Macromolecules, 2010,43(5):2490-2501. doi: 10.1021/ma902714p

    39. [39]

      Sun L N, Yu J B, Peng H S, Zhang J Z, Shi L Y, Wolfbeis O S. Temperature-Sensitive Luminescent Nanoparticles and Films Based on a Terbium Complex Probe[J]. J. Phys. Chem. C, 2010,114(29):12642-12648. doi: 10.1021/jp1028323

    40. [40]

      Ge X Q, Sun L N, Dang S, Liu J L, Xu Y X, Wei Z W, Shi L Y, Zhang H J. Mesoporous Upconversion Nanoparticles Modified with a Tb Complex to Display both Green Upconversion and Downcon-version Luminescence for In Vitro Bioimaging and Sensing of Tem-perature[J]. Microchim. Acta, 2015,182:1653-1660. doi: 10.1007/s00604-015-1481-0

  • 加载中
    1. [1]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    2. [2]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    19. [19]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    20. [20]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

Metrics
  • PDF Downloads(10)
  • Abstract views(1255)
  • HTML views(222)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return