Citation: Qian LIANG, Xiang-Yan LUO, Yi-Xin WANG, Yong-Chao LIANG, Quan XIE. Effects of Cr, Sn, Co Doping on Electronic and Optical Properties of Layered Two-Dimensional Material MoSi2N4[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 959-968. doi: 10.11862/CJIC.2022.096 shu

Effects of Cr, Sn, Co Doping on Electronic and Optical Properties of Layered Two-Dimensional Material MoSi2N4

  • Corresponding author: Quan XIE, qxie@gzu.edu.cn
  • Received Date: 12 December 2021
    Revised Date: 21 March 2022

Figures(8)

  • Based on the newly synthesized two-dimensional material MoSi2N 4 (MSN), we developed a series of doped models of MSN for first - principles calculations. Firstly, we calculated the electronic properties of intrinsic MSN, including its band structure and density of states. Then we investigated the effects of Cr, Sn, and Co- doping on the electronic and optical properties of MSN. Our work demonstrates that the Co-doped system exhibits the lowest formation energy among the three doped systems, which indicates that the Co-doped system is the most stable one. The calculations of band gaps show that although all three doped models decrease the band gap of intrinsic MSN, three doped systems exhibit three different electronic properties. The densities of state diagrams also show that the Cr-doped system and the Co-doped system both produce local spikes near conduction band minimum (CBM) and valence band maximum (VBM). Furthermore, the optical properties of the MSN have also been improved a lot after doping.
  • 加载中
    1. [1]

      Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A. Electric Field Effect in Atomically Thin Carbon Films[J]. Science, 2004,306(5696):666-669. doi: 10.1126/science.1102896

    2. [2]

      Akinwande D, Brennan C J, Bunch J S, Egberts P, Felts J R, Gao H J, Huang R, Kim J S, Li T, Li Y, Liechti K M, Lu N S, Park H S, Reed E J, Wang P, Yakobson B I, Zhang T, Zhang Y W, Zhou Y, Zhu Y. A Review on Mechanics and Mechanical Properties of 2D Materials-Graphene and Beyond[J]. Extreme Mech. Lett., 2017,13:42-77. doi: 10.1016/j.eml.2017.01.008

    3. [3]

      Taft E A, Philipp H R. Optical Properties of Graphite[J]. Phys. Rev., 1965,138(1A):A197-A202. doi: 10.1103/PhysRev.138.A197

    4. [4]

      Sangwan V K, Hersam M C. Electronic Transport in Two-Dimensional Materials[J]. Annu. Rev. Phys. Chem., 2018,69:299-325. doi: 10.1146/annurev-physchem-050317-021353

    5. [5]

      Duerloo K A N, Ong M T, Reed E J. Intrinsic Piezoelectricity in Two-Dimensional Materials[J]. J. Phys. Chem. Lett., 2012,3(19):2871-2876. doi: 10.1021/jz3012436

    6. [6]

      Ding W J, Zhu J B, Wang Z, Gao Y F, Xiao D, Gu Y, Zhang Z Y, Zhu W G. Prediction of Intrinsic Two-Dimensional Ferroelectrics in In2Se3 and other Ⅲ2-Ⅵ3 van der Waals Materials[J]. Nat. Commun., 2017,8(1):1-8. doi: 10.1038/s41467-016-0009-6

    7. [7]

      Tombros N, Jozsa C, Popinciuc M, Jonkman H T, Van Wees B J. Elec-tronic Spin Transport and Spin Precession in Single Graphene Layers at Room Temperature[J]. Nature, 2007,448(7153):571-574. doi: 10.1038/nature06037

    8. [8]

      Ciccarino C J, Christensen T, Sundararaman R, Narang P. Dynamics and Spin-Valley Locking Effects in Monolayer Transition Metal Dichalcogenides[J]. Nano Lett., 2018,18(9):5709-5715. doi: 10.1021/acs.nanolett.8b02300

    9. [9]

      Hong Y L, Liu Z B, Wang L, Zhou T Y, Ma W, Xu C A, Feng S, Chen L, Chen M L, Sun D M, Chen X Q, Cheng H M, Ren W C. Chemical Vapor Deposition of Layered Two-Dimensional MoSi2N4 Materials[J]. Science, 2020,369(6504):670-674. doi: 10.1126/science.abb7023

    10. [10]

      Wang L, Shi Y P, Liu M F, Zhang A, Hong Y L, Li R H, Gao Q, Chen M X, Ren W C, Cheng H M, Li Y Y, Chen X Q. Intercalated Architecture of MA2Z4 Family Layered van der Waals Materials with Emerging Topological, Magnetic and Superconducting Properties[J]. Nat. Commun., 2021,12(1):1-10. doi: 10.1038/s41467-020-20314-w

    11. [11]

      Yu J H, Zhou J, Wan X G, Li Q F. High Intrinsic Lattice Thermal Conductivity in Monolayer MoSi2 N 4[J]. New J. Phys., 2021,23(3)033005. doi: 10.1088/1367-2630/abe8f7

    12. [12]

      Bafekry A, Faraji M, Hoat D M, Shahrokhi M, Fadlallah M M, Shojaei F, Feghhi S A, Ghergherehchi M, Gogova D. MoSi2N4 Single-Layer: A Novel Two-Dimensional Material with Outstanding Mechan-ical, Thermal, Electronic and Optical Properties[J]. J. Phys. D: Appl. Phys., 2021,54(15)155303. doi: 10.1088/1361-6463/abdb6b

    13. [13]

      Li S, Wu W K, Feng X L, Guan S, Feng W X, Yao Y G, Yang S A. Valley-Dependent Properties of Monolayer MoSi2N4, WSi2N4, and MoSi2As4[J]. Phys. Rev. B, 2020,102(23)235435. doi: 10.1103/PhysRevB.102.235435

    14. [14]

      Cao L M, Zhou G H, Wang Q Q, Ang L K, Ang Y S. Two-Dimensional van der Waals Electrical Contact to Monolayer MoSi2N4[J]. Appl. Phys. Lett., 2021,118(1)013106. doi: 10.1063/5.0033241

    15. [15]

      Ray A, Tyagi S, Singh N, Schwingenschlogl U. Inducing Half-Metallicity in Monolayer MoSi2N4[J]. ACS Omega, 2021,6(45):30371-30375. doi: 10.1021/acsomega.1c03444

    16. [16]

      Cui Z, Luo Y, Yu J, Xu Y J. Tuning the Electronic Properties of MoSi2N4 by Molecular Doping: A First-Principles Investigation[J]. Physica E, 2021,134114873. doi: 10.1016/j.physe.2021.114873

    17. [17]

      Bafekry A, Faraji M, Fadlallah M M, Khatibani A B, Ziabari A A, Ghergherehchi M, Nedaei S, Shayesteh S F, Gogova D. Tunable Electronic and Magnetic Properties of MoSi2N4 Monolayer via Vacancy Defects, Atomic Adsorption and Atomic Doping[J]. Appl. Surf. Sci., 2021,559149862. doi: 10.1016/j.apsusc.2021.149862

    18. [18]

      Yang C, Song Z G, Sun X T, Lu J. Valley Pseudospin in Monolayer MoSi2N4 and MoSi2As4[J]. Phys. Rev. B, 2021,103(3)035308. doi: 10.1103/PhysRevB.103.035308

    19. [19]

      Li Q F, Zhou W X, Wan X G, Zhou J. Strain Effects on Monolayer MoSi2N4: Edeal Strength and Failure Mechanism[J]. Physica E, 2021,131114753. doi: 10.1016/j.physe.2021.114753

    20. [20]

      Kresse G, Hafner J. Ab Initio Molecular Dynamics for Liquid Metals[J]. Phys. Rev. B, 1993,47(1):558-561. doi: 10.1103/PhysRevB.47.558

    21. [21]

      Kresse G, Hafner J. Ab Initio Molecular-Dynamics Simulation of the Liquid-Metal -Amorphous-Semiconductor Transition in Germanium[J]. Phys. Rev. B, 1994,49(20)14251. doi: 10.1103/PhysRevB.49.14251

    22. [22]

      Blöchl P E. Projector Augmented-Wave Method[J]. Phys. Rev. B, 1994,50(24)17953. doi: 10.1103/PhysRevB.50.17953

    23. [23]

      Perdew J P, Burke K, Ernzerhof M. Generalized Gradient Approxi-mation Made Simple[J]. Phys. Rev. Lett., 1996,77(18):3865-3868. doi: 10.1103/PhysRevLett.77.3865

    24. [24]

      Cheng Y C, Zhu Z T, Mi W B, Guo Z B, Schwingenschlögl U. Predic-tion of Two-Dimensional Diluted Magnetic Semiconductors: Doped Monolayer MoS2 Systems[J]. Phys. Rev. B, 2013,87(10)100401. doi: 10.1103/PhysRevB.87.100401

    25. [25]

      Yue Q, Chang S L, Qin S Q, Li J B. Functionalization of Monolayer MoS2 by Substitutional Doping: A First-Principles Study[J]. Phys. Lett. A, 2013,377(19/20):1362-1367.

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    6. [6]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    7. [7]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    8. [8]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    9. [9]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    10. [10]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    11. [11]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    12. [12]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    15. [15]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    16. [16]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    17. [17]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    20. [20]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

Metrics
  • PDF Downloads(5)
  • Abstract views(533)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return