Citation: Yan LIU, Xin-Yan LÜ, Fu-Wei YANG, Kun ZHANG, Lu YANG, Man-Li SUN, Li-Qin WANG. Application of Inorganic Materials in Consolidation of Bone Relics[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 777-786. doi: 10.11862/CJIC.2022.095 shu

Application of Inorganic Materials in Consolidation of Bone Relics

  • Corresponding author: Fu-Wei YANG, yangfuwei@nwu.edu.cn
  • Received Date: 1 January 2022
    Revised Date: 16 March 2022

Figures(12)

  • Traditionally, synthetic polymers are widely adopted in the consolidation of bone relics. However, organic materials are insufficient in weather resistance and compatibility with bone relics. For the past few years, more and more attention has been paid to inorganic protective materials because of their good weatherability and compatibility. In this paper, the characteristics, the consolidating mechanism, and the research actuality of inorganic protective materials are reviewed.
  • 加载中
    1. [1]

      Reiche I, Lebon M, Chadefaux C. Microscale Imaging of the Preserva- tion State of 5 000 - Year - Old Archaeological Bones by Synchrotron Infrared Microspectroscopy[J]. Anal. Bioanal. Chem., 2010,397(6):2491-2499. doi: 10.1007/s00216-010-3795-4

    2. [2]

      Lézine A M, Robert C, Cleuziou S. Climate Change and Human Occu- pation in the Southern Arabian Lowlands during the Last Deglaciation and the Holocene[J]. Global Planet. Change, 2010,72(4):412-28. doi: 10.1016/j.gloplacha.2010.01.016

    3. [3]

      Lyman R L. Human Behavioral and Paleoecological Implications of Terminal Pleistocene Fox Remains at the Marmes Site (45FR50), Eastern Washington State, USA[J]. Quat. Sci. Rev., 2012,41:39-48. doi: 10.1016/j.quascirev.2012.03.009

    4. [4]

      Tomassetti M, Marini F, Campanella L. Study of Modern or Ancient Collagen and Human Fossil Bones from an Archaeological Site of Mid- dle Nile by Thermal Analysis and Chemometrics[J]. Microchem. J., 2013,108:7-13. doi: 10.1016/j.microc.2012.11.006

    5. [5]

      Oyen M L, Ferguson V L, Bembey A K, Bushby A J, Boyde A. Com- posite Bounds on the Elastic Modulus of Bone[J]. J. Biomech., 2018,41(11):2585-2588.

    6. [6]

      Johnson J S. Consolidation of Archaeological Bone: A Conservation Perspective[J]. J. Field Archaeol., 1994,21(2):221-223.

    7. [7]

      Chengdu Institute of Archaeology of Cultural Relics. Silicone Material was Used for Storage and Protection of Ivory Vessels Unearthed from Jinsha Site[J]. China Cultural Heritage, 2004,327.

    8. [8]

      Turner - Walker G. The Mechanical Properties of Artificially Aged Bone: Probing the Nature of the Collagen-Mineral Bond[J]. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2011,310(1/2):17-722.

    9. [9]

      WANG L. Ancient Ivory Relics in China and Their Conservation Sig- nificance[J]. China Cultural Heritage Scientific Research, 2007,2:58-61.  

    10. [10]

      ZHANG Y W, CAO J X. Backfill, for Better Protection. Wen Hui Bao, 2003-05-23(9).

    11. [11]

      XIAO L, BAI Y L, SUN J. Cleaning, Reinforcement and Conserva- tion of Ivory unearthed from Jinsha site[J]. Sciences of Conservation and Archaeology, 2004,16(3):24-28. doi: 10.3969/j.issn.1005-1538.2004.03.005

    12. [12]

      Chadefaux C, Vignaud C, Menu M. Effects and Efficiency of Consoli- dation Treatments on Palaeolithic Reindeer Antler Multi-analytical Study by Means of XRD, FT-IR Microspectroscopy, SEM, TEM and µ-PIXE/PIGE Analyses.[J]. Appl. Phys. A, 2008,92(1):171-177. doi: 10.1007/s00339-008-4469-3

    13. [13]

      Larkin N R. Literally a' Mammoth Task': The Conservation, Prepa- ration and Curation of the West Runton Mammoth Skeleton[J]. Quatern. Int., 2010,228(1/2):233-240.

    14. [14]

      LIU X Q. Overview of Excavated Bone Relics Protection Status[J]. Tourism Overview, 2012,2178.  

    15. [15]

      Poli T, Toniolo L, Sansonetti A. Durability of Protective Polymers: The Effect of UV and Thermal Ageing[J]. Macromol. Symp, 2006,238(1):78-83. doi: 10.1002/masy.200650611

    16. [16]

      Lazzari M, Ledo - Suárez A, López T. Plastic Matters: An Analytical Procedure to Evaluate the Degradability of Contemporary Works of Art[J]. Anal. Bioanal. Chem., 2011,399(9):2939-2948. doi: 10.1007/s00216-011-4664-5

    17. [17]

      Lazzari M, Scalarone D, Malucelli G. Durability of Acrylic Films from Commercial Aqueous Dispersion: Glass Transition Tempera- ture and Tensile Behavior as Indexes of Photooxidative Degradation[J]. Prog. Org. Coat., 2011,70(2/3):116-121.

    18. [18]

      Cappitelli F, Sorlini C. Microorganisms Attack Synthetic Polymers in Items Representing Our Cultural Heritage[J]. Appl. Environ. Microbiol., 2008,74(3):564-569. doi: 10.1128/AEM.01768-07

    19. [19]

      Baglioni M, Giorgi R, Berti D.. Smart Cleaning of Cultural Heritage: A New Challenge for Soft Nanoscience[J]. Nanoscale, 2012,4(1):42-53. doi: 10.1039/C1NR10911A

    20. [20]

      ZHANG B J, WEI G F, YANG F W. Problems and Development Trend in the Research of Immovable Materials for Conservation of Cultural Relics[J]. Sciences of Conservation and Archaeology, 2010,22(4):102-109.  

    21. [21]

      France C A M, Giaccai J A, Cano N. The Effects of PVAc Treatment and Organic Solvent Removal on δ13C, δ15N, and δ18O Values of Col- lagen and Hydroxyapatite in a Modern Bone[J]. J. Archaeol. Sci., 2011,38:3387-3393. doi: 10.1016/j.jas.2011.07.024

    22. [22]

      Lopez - Polín L. Interventive Conservation Treatments (or Prepara- tion) of Pleistocene Bones: Criteria for Covering Information from the Archaeopalaeontological Record[J]. Quatern. Int., 2015,388:199-205. doi: 10.1016/j.quaint.2015.05.031

    23. [23]

      López - Polín L. Possible Interferences of Some Conservation Treat- ments with Subsequent Studies on Fossil Bones: A Conservator's Overview[J]. Quatern. Int., 2012,275:120-127. doi: 10.1016/j.quaint.2011.07.039

    24. [24]

      Fernández - Jalvo Y, Marín - Monfort M D. Experimental Taphonomy in Museums: Preparation Protocols for Skeletons and Fossil Verte- brates under the Scanning Electron Microscopy[J]. Geobios, 2008,41(1):157-181. doi: 10.1016/j.geobios.2006.06.006

    25. [25]

      Eklund J A, Thomas M G.. Assessing the Effects of Conservation Treatments on Short Sequences of DNA In Vitro[J]. J. Archaeol. Sci., 2010,37(11):2831-2841. doi: 10.1016/j.jas.2010.06.019

    26. [26]

      Gianfrate G, D'Elia M, Quarta G. Qualitative Application Based on IR Spectroscopy for Bone Sample Quality Control in Radiocarbon Dating[J]. Nucl. Instrum. Methods Phys. Res. Sect. B, 2007,259(1):316-319. doi: 10.1016/j.nimb.2007.01.309

    27. [27]

      LI Y L, LING X, YANG L P, ZHAO X C, SUN M L. Application of Modern Chemical Materials in the Conservation of Archaeological Osseous Remains[J]. Polymer Materials Science & Engineering, 2021,37(2):168-175.  

    28. [28]

      WANG Y B, WANG S J, LI L, WANG X D, LI Z X. Research on Infiltration Reinforcement Mechanism and Improved Properties of Potassium Silicate for Earthen Relics Soils[J]. Rock and Soil Mechanics, 2014,3:696-704.  

    29. [29]

      LI Y M. The Modification Study of Sodium Silicate and Its Application for the Protection of Ancient Ivory. Chengdu: Chengdu University of Technology, 2007: 64

    30. [30]

      WAN M. Application Research on Impregnation Technology Used in Ancient Ivory Protection. Chengdu: Chengdu University of Technology, 2007: 47

    31. [31]

      JIN Z L, LIU D D, ZHANG Y K, CHEN G Q, XIA Y. Salt Migrations and Damage Mechanism in Cultural Heritage Objects[J]. Sciences of Conservation and Archaeology, 2007,5:102-116.  

    32. [32]

      HAN X N, HUANG X, ZHANG B J, LUO H J. Preparation of Calcium Hydroxide Nanoparticles and Their Applications in Cultural Heri- tage Conservation[J]. Chinese Journal of Nature, 2016,1:23-32.  

    33. [33]

      Natali I, Tempesti P, Carretti E, Potenza M, Sansoni S, Baglioni P, Luigi D. Aragonite Crystals Grown on Bones by Reaction of CO2 with Nanostructured Ca(OH)2 in the Presence of Collagen, Implications in Archaeology and Paleontology[J]. Langmuir, 2014,30(2):660-668.

    34. [34]

      Shen F H, Feng Q L, Wang C M. The Modulation of Collagen on Crystal Morphology of Calcium Carbonate[J]. J. Cryst. Growth, 2002,242(1/2):239-244.

    35. [35]

      Palazzo A, Megna B, Reiche I, Levy J. Comparative Study between Four Consolidation Systems Suitable for Archaeological Bone Arte- facts. https://www.researchgate.net/publication/308050721

    36. [36]

      YUAN G H, FANG Q K, FANG L M, CHENG Z B, ZHOU W G. Method of Repairing Bone Relic with High Strength Inorganic Fiber Material: CN202110415412.1. 2021-07-30.

    37. [37]

      GE D Y. Study on Biomimetic Reinforcement of Archaeological Bone by Microbially Induced Calcite Precipitation. Jilin: Jilin University, 2020: 64

    38. [38]

      YANG F W, LIU Y, ZHANG K, ZHOU W Q, ZHANG B J. Review of Research on Hydroxyapatite Materials Used in the Conservation of Cultural Heritage Objects[J]. Sciences of Conservation and Archaeology, 2021,33(2):105-109.  

    39. [39]

      Yang F W, Zhang B J, Liu Y, Wei G F, Zhang H, Chen W X, Xu Z D. Biomimic Conservation of Weathered Calcareous Stones by Apa- tite[J]. New J. Chem., 2011,35:887-892.

    40. [40]

      Yang F W, Liu Y, Zhu Y C, Long S J, Zuo G F, Wang C Q, Guo F, Zhang B J, Jiang S W. Conservation of Weathered Historic Sand- stone with Biomimetic Apatite[J]. Chin. Sci. Bull., 2012,57(17):2171-2176.

    41. [41]

      Dong T L, Liu Y, He L, Yang F W, Zhang K. Preparation of Hydroxy- apatite Coating for the Conservation of Gypsum Crust on Historic Limestones[J]. Mater. Lett.: X, 2021,12:100-103.

    42. [42]

      LIU X Q, FAN M, MA Z H, SU Y, ZHAO X G. Application of Colla- gen - Based Engineered Bone Tissue Scaffolding Composites for the Protection of Bone Relics[J]. Sciences of Conservation and Archaeology, 2013,25(1):68-74.  

    43. [43]

      WANG K, HU D B. Hydroxyapatite: Collagen Biomimetic Composite Material in Conservation of Tortoise Shell Relics[J]. Journal of National Museum of China, 2013(3):141-152.  

    44. [44]

      ZHEN D Q, HU Z G, YUN Y, ZHANG Y Z. Study on Preparation of Nanometer Hydroxyapatite by Hydrothermal Synthesis[J]. Cultural Relics of the East, 2019(4):120-123.

    45. [45]

      ZHEN D Q, CHEN B R, WAN L, ZHANG Y Z, YUN Y, HE Z C. Adhesive Composition for the Restoration of Bone Relics: CN201711345477.3. 2018-06-29.

    46. [46]

      GONG W. On the Applications of Nano‑hydroxyapatite in the Consolidation of Ancient Ivory and QCMD Sensors. Chengdu: South- west Jiaotong University, 2018: 65

    47. [47]

      ZHEN J, GONG W, ZHEN L, ZHOU Z R, XIAO H, LONG Y J. The Invention Relates to a Strengthening Agent for Bone Cultural Relics, a Preparation Method and a Strengthening Method for Bone Cultural Relics: CN201810354202.4. 2018-09-11.

    48. [48]

      Gong W, Yang S, Zheng L, Xiao H, Zheng J, Wu B, Zhou Z R. Consolidating Effect of Hydroxyapatite on the Ancient Ivories from Jinsha Ruins Site: Surface Morphology and Mechanical Properties Study[J]. J. Cult. Heritage, 2019:116-122.

    49. [49]

      2015-04-01. YANG F W, LIU Y. A Method for Strengthening and Protecting Weathered Bone Cultural Relics: CN201410596581. X. 2015-04-01.

    50. [50]

      Yang F W, He D C, Liu Y, Li N M, Wang Z, Ma Q, Dong G Q. Conservation of Bone Relics Using Hydroxyapatite as Protective Material[J]. Appl. Phys. A, 2016479.

    51. [51]

      LIU L X. Disease Principles of Ivory Fossils from Chengcheng and the Research on the Consolidation and Conservation[J]. Archaeology and Cultural Relics, 2014:100-103.  

    52. [52]

      Salvatore A, Vai S, Caporali S, Caramelli D, Lari M, Carretti E. Eval- uation of Diammonium Hydrogen Phosphate and Ca(OH)2 Nanoparti- cles for Consolidation of Ancient Bones[J]. J. Cult. Heritage, 2020,41:1-12.

    53. [53]

      North A, Balonis M, Kakoulli I. Biomimetic Hydroxyapatite as a New Consolidating Agent for Archaeological Bone[J]. Stud. Conserv, 2016:146-161.

    54. [54]

      Nesseri E C, Boyatzis S, Boukos N, Panagiaris G. Optimizing the Bio- mimetic Synthesis of Hydroxyapatite for the Consolidation of Bone Using Diammonium Phosphate, Simulated Body fluid, and Gelatin[J]. SN Appl. Sci., 2020,21892.

    55. [55]

      HE W J, WU L. Gypsum and Archaeology[J]. Popular Archaeology, 2018,6:28-31.  

    56. [56]

      YANG F W, LIU Y. A Method for Protecting Fragile Bone Relics Based on Calcium Sulfate Material: CN201811568543.8. 2019 -03 - 08.

    57. [57]

      Liu Y, Hu Q, Zhang K, Yang F W, Yang L, Wang L W. In ‑ Situ Growth of Calcium Sulfate Dihydrate as a Consolidating Material for the Archaeological Bones[J]. Mater. Lett., 2021,282128713.

    58. [58]

      LIU Y, YANG F W. The Invention Relates to a Reinforcement Treat- ment Method for Porous Bone and Horn Cultural Relics: CN201911073513.4. 2020-01-10.

  • 加载中
    1. [1]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    2. [2]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    3. [3]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    4. [4]

      Zhuoxi Li Jieshu Wei Yanqin Cheng . Practice of Integrating Ideological and Political Education into Inorganic Chemistry Curriculum. University Chemistry, 2024, 39(2): 255-262. doi: 10.3866/PKU.DXHX202308084

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    7. [7]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    8. [8]

      Chi Zhang Suqi Wu An Liu Wei Zhang Xiao Wei . Application of Team-Based Learning Teaching Method in Inorganic Chemistry Course: the Design Case of Inorganic Chemistry Teaching in Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 89-95. doi: 10.12461/PKU.DXHX202409135

    9. [9]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    10. [10]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    11. [11]

      Zhihui Wen Zhanheng Feng Xue Qi Xiaohang Qiu . Exploration and Practice in Inorganic Chemistry Laboratory Management under Broad-based Admission Programs. University Chemistry, 2024, 39(6): 181-188. doi: 10.3866/PKU.DXHX202310081

    12. [12]

      Fan Yu Aihua Li Yun Liu Tianrong Zhu Liang Wang Junhui Xu Yazhen Wang . Exploration and Practice in Developing a Premier Course in Inorganic and Analytical Chemistry. University Chemistry, 2024, 39(8): 36-43. doi: 10.3866/PKU.DXHX202312037

    13. [13]

      Yuanhong Zhang Lin Jiang Yanfang Wang Chengxia Miao Lili Zhang Yijing Li Junling Duan Juying Hou Qin Hou Fuxian Wan . Exploration and Practice of Teaching Reform in Inorganic Chemistry within the New Agricultural Sciences Framework. University Chemistry, 2024, 39(8): 72-77. doi: 10.3866/PKU.DXHX202312060

    14. [14]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    15. [15]

      Qin Kuang Lansun Zheng Yaxian Zhu . Overall Design of the Inorganic Chemistry Course for the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 14-21. doi: 10.12461/PKU.DXHX202408071

    16. [16]

      Weigang Zhu Yun Tian Zhicheng Zhang Hongling Gao . Reform Exploration of Student Performance Assessment in Inorganic Chemistry Experimental Courses. University Chemistry, 2024, 39(10): 203-209. doi: 10.12461/PKU.DXHX202404114

    17. [17]

      Xia Zhang Xiaoguang Sang Jinxia Wang Hao Meng . Problem-Driven Inorganic Chemistry Course Teaching Practice Integrating Industry,Academia,and Research. University Chemistry, 2024, 39(10): 369-376. doi: 10.12461/PKU.DXHX202310027

    18. [18]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    19. [19]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    20. [20]

      Changsheng Lu . Discovering-and-Sharing Model: a Case of the Inorganic Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 78-83. doi: 10.12461/PKU.DXHX202408028

Metrics
  • PDF Downloads(22)
  • Abstract views(1232)
  • HTML views(301)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return