Citation: Xiu-Dong CHEN, Jiang-Nan KE, Ping YAN, Jin-Hang LIU, Ya-Wei WANG, Chang-Chao ZHAN, Xiao-Duo JIANG. Core-Shell Nanosphere Cobalt-Based Metal-Organic Polymer: Preparation and Lithium Storage Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 836-842. doi: 10.11862/CJIC.2022.089 shu

Core-Shell Nanosphere Cobalt-Based Metal-Organic Polymer: Preparation and Lithium Storage Performance

Figures(8)

  • Using trimellitic acid and cobalt nitrate hexahydrate as raw materials, two cobalt-based metal-organic polymers (Co-MOP) with different reaction times were synthesized by the hydrothermal method. The structure and morphology of Co-MOP were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and N2 adsorption-desorption test. Two cobalt-based metal-organic polymer materials were used as anode materials for lithium-ion batteries, and the electrochemical performance tests were carried out. The results showed that Co-MOP-12 (hydrothermal reaction for 12 h) exhibited excellent electrochemical performance. The first-cycle reversible specific capacity the of Co-MOP-12 electrode reached 979 mAh·g-1 at a current density of 100 mA·g-1. The specific capacity was as high as 1 345 mAh·g-1 after 100 cycles.
  • 加载中
    1. [1]

      Zhang C, Wei Y L, Cao P F, Lin M C. Energy Storage System: Current Studies on Batteries and Power Condition System[J]. Renewable Sustainable Energy Rev., 2018,82(3):3091-3106.

    2. [2]

      Tang W, Yin X S, Kang S J, Zhan Z X, Tian B B, Teo S L, Wang X W, Chi X, Loh K L, Lee H W, Zheng G W. Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery[J]. Adv. Mater., 2018,30(34)1801745. doi: 10.1002/adma.201801745

    3. [3]

      Choi J W, Aurbach D. Promise and Reality of Post-Lithium-Ion Batteries with High Energy Densities[J]. Nat. Rev. Mater., 2016,1(4)16013. doi: 10.1038/natrevmats.2016.13

    4. [4]

      Schon T B, Mcallister B T, Li P F, Seferos D S.. The Rise of Organic Electrode Materials for Energy Storage.[J]. Chem. Soc. Rev., 2016,45(22):6345-6404. doi: 10.1039/C6CS00173D

    5. [5]

      Weng Y Q, Xu S M, Huang G Y, Jiang C Y. Synthesis And Performance of Li[(Ni1/3Co1/3Mn1/3)(1-x)Mgx]O2 Prepared from Spent Lithium Ion Batteries[J]. J. Hazard. Mater., 2013,246:163-172.

    6. [6]

      Kim T, Song W T, Son D Y, Ono L K, Qi Y B. Lithium-Ion Batteries: Outlook on Present, Future, and Hybridized Technologies[J]. J. Mater. Chem. A, 2019,7(7):2942-2964. doi: 10.1039/C8TA10513H

    7. [7]

      Armand M, Tarascon J M. Building Better Batteries[J]. Nature, 2008,451:652-657. doi: 10.1038/451652a

    8. [8]

      Zhang H L, Zhao H B, Khan M A, Zou W W, Xu J Q, Zhang L, Zhang J J. Recent Progress in Advanced Electrode Materials, Separators and Electrolytes for Lithium Batteries[J]. J. Mater. Chem. A, 2018,6(42):20564-20620. doi: 10.1039/C8TA05336G

    9. [9]

      Goodenough J B, Park K S. The Li-Ion Rechargeable Battery: A Perspective[J]. J. Am. Chem. Soc., 2013,135(4):1167-1176. doi: 10.1021/ja3091438

    10. [10]

      Chen X D, Sun W W, Wang Y. Covalent Organic Frameworks for Next-Generation Batteries[J]. ChemElectroChem, 2020,7(19):3905-3926. doi: 10.1002/celc.202000963

    11. [11]

      Yao S W, Shi Z Q, Zhang X X. Synthesis and Electrochemical Properties of α-Fe2O3 Porous Microrods as Anode for Lithium-Ion Batteries[J]. J. Alloys Compd., 2019,794:333-340. doi: 10.1016/j.jallcom.2019.04.298

    12. [12]

      Ye J C, Baumgaertel A C, Wang M Y, Biener J, Biener M M. Structural Optimization of 3D Porous Electrodes for High-Rate Performancelithium Ion Batteries[J]. ACS Nano, 2015,9(2):2194-2202. doi: 10.1021/nn505490u

    13. [13]

      Li C, Zhang C, Xie J, Wang K B, Li J Z, Zhang Q C. Ferrocene-Based Metal-Organic Framework as a Promising Cathode in Lithium-Ion Battery[J]. Chem. Eng. J., 2021,404126463. doi: 10.1016/j.cej.2020.126463

    14. [14]

      Wang K B, Wang S E, Liu J D, Guo Y X, Mao F F, Wu H, Zhang Q C. Fe-Based Coordination Polymers as Battery-Type Electrodes in Semi-Solid-State Battery-Supercapacitor Hybrid Devices[J]. ACS Appl. Mater. Interfaces, 2020,12(29):32719-32725. doi: 10.1021/acsami.0c07729

    15. [15]

      Li C, Yang H Y, Xie J, Wang K B, Li J Z, Zhang Q C. Ferrocene-Based Mixed-Valence Metal-Organic Framework as an Efficient and Stable Cathode for Lithium-Ion-Based Dual-Ion Battery[J]. ACS Appl. Mater. Interfaces, 2021,13(13):15315-15323. doi: 10.1021/acsami.1c01339

    16. [16]

      Yin X J, Zhi C W, Sun W W, Lv L P, Wang Y. Multilayer NiO@Co3O4@Graphene Quantum Dots Hollow Spheres for High-Performance Lithium-Ion Batteries and Supercapacitors[J]. J. Mater. Chem. A, 2019,7(13):7800-7814. doi: 10.1039/C8TA11982A

    17. [17]

      Zhu S H, Li Q D, Wei Q L, Sun R M, Liu X Q, An Q Y, Mai L Q. NiSe2 Nanooctahedra as an Anode Material for High-Rate and Long-Life Sodium-Ion Battery[J]. ACS Appl. Mater. Interfaces, 2017,9(1):311-316. doi: 10.1021/acsami.6b10143

    18. [18]

      Chao D L, Liang P, Chen Z, Bai L Y, Shen H, Liu X X, Xia X H, Zhao Y L, Savilov S V, Lin J Y, Shen Z X. Pseudocapacitive Na-Ion Storage Boosts High Rate and Areal Capacity of Self-Branched 2D Layered Metal Chalcogenide Nanoarrays[J]. ACS Nano, 2016,10(11):10211-10219. doi: 10.1021/acsnano.6b05566

    19. [19]

      Chen Z L, Wu R B, Wang H, Jiang Y K, Jin L, Guo Y H, Song Y, Fang F, Sun D L. Construction of Hybrid Hollow Architectures by In‑Situ Rooting Ultrafine ZnS Nanorods within Porous Carbon Polyhedra for Enhanced Lithium Storage Properties[J]. Chem. Eng. J., 2017,326:680-690. doi: 10.1016/j.cej.2017.06.009

    20. [20]

      Wu Z Z, Xie J, Xu J Z, Zhang S Q, Zhang Q C. Recent Progress in Metal-Organic Polymers as Promising Electrodes for Lithium/Sodium Rechargeable Batteries[J]. J. Mater. Chem. A, 2019,7(9):4259-4290. doi: 10.1039/C8TA11994E

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    7. [7]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    8. [8]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    13. [13]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(3)
  • Abstract views(654)
  • HTML views(136)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return