Citation: Pei CHEN, Wen-Hao LIANG, Ya-Kun TANG, Yang GAO, Rui SHENG, Lang LIU. Preparation and Electrochemical Properties of S/Porous Carbon Nanotube Composites[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 805-811. doi: 10.11862/CJIC.2022.088 shu

Preparation and Electrochemical Properties of S/Porous Carbon Nanotube Composites

  • Corresponding author: Lang LIU, liulang@xju.edu.cn
  • Received Date: 2 October 2021
    Revised Date: 4 March 2022

Figures(5)

  • In order to solve the problems such as poor electrical conductivity of sulfur, the large volume expansion and the shuttle effect of intermediate polysulfides during the cycling process, the S/PCNT composites were prepared by introducing sulfur into porous carbon nanotubes (PCNTs), the electrochemical performance of S/PCNT was investigat-ed. Compared with S/CNT, the electrochemical performance of S/PCNT has been significantly improved. This can be attributed to the embedded structure of S/PCNT, which has provided buffer space for the volume expansion during the charge and discharge process, avoided the direct contact between sulfur and electrolytes, restricted the dissolution of polysulfides, and alleviated the shuttle effect of polysulfides. Therefore, S/PCNT has better cycling stability.
  • 加载中
    1. [1]

      Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for Rechargeable Lithium Batteries[J]. Angew. Chem. Int. Ed., 2008,47(16):2930-2946. doi: 10.1002/anie.200702505

    2. [2]

      Manthiram A, Chung S H, Zu C X.. Lithium-Sulfur Batteries: Progress and Prospects[J]. Adv. Mater., 2015,27(12):1980-2006. doi: 10.1002/adma.201405115

    3. [3]

      Wang Z Y, Zhang N, Yu M L, Liu J S, Wang S, Qiu J S.. Boosting Redox Activity on MXene-Induced Multifunctional Collaborative Interface in High Li2S Loading Cathode for High-Energy Li-S and Metallic Li -Free Rechargeable Batteries[J]. J. Energy Chem., 2019,37:183-191. doi: 10.1016/j.jechem.2019.03.012

    4. [4]

      Ji X L, Lee K T, Nazar L F.. A Highly Ordered Nanostructured Carbon-Sulphur Cathode for Lithium -Sulphur Batteries[J]. Nat. Mater., 2009,8(6):500-506. doi: 10.1038/nmat2460

    5. [5]

      Zhang C F, Wu H B, Yuan C Z, Guo Z P, Lou X W. Confining Sulfur in Double-Shelled Hollow Carbon Spheres for Lithium-Sulfur Batteries[J]. Angew. Chem. Int. Ed., 2012,51(38):9592-9595. doi: 10.1002/anie.201205292

    6. [6]

      Zheng M B, Chi Y, Hu Q, Tang H, Jiang X L, Zhang L, Zhang S T, Pang H, Xu Q. Carbon Nanotube-Based Materials for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2019,7:17204-17241. doi: 10.1039/C9TA05347F

    7. [7]

      Zeng S Z, Yao Y C, Zeng X R, He Q J, Zheng X F, Chen S S, Tu W X, Zou J Z. A Composite of Hollow Carbon Nanospheres and Sulfur-Rich Polymers for Lithium-Sulfur Batteries[J]. J. Power Sources, 2017,357:11-18. doi: 10.1016/j.jpowsour.2017.04.092

    8. [8]

      Xie Y P, Fang L, Cheng H W, Hu C J, Zhao H B, Xu J Q, Fang J H, Lu X G, Zhang J J. Biological Cell Derived N -Doped Hollow Porous Carbon Microspheres for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2016,4:15612-15620. doi: 10.1039/C6TA06164H

    9. [9]

      Liang W H, Tang Y K, Liu L, Zhu C X, Sheng R. Effective Trapping of Polysulfides Using Functionalized Thin-Walled Porous Carbon Nanotubes as Sulfur Hosts for Lithium-Sulfur Batteries[J]. Inorg. Chem., 2020,59(12):8481-8486. doi: 10.1021/acs.inorgchem.0c00895

    10. [10]

      Mi K, Jiang Y, Feng J K, Qian Y T, Xiong S L. Hierarchical Carbon Nanotubes with a Thick Microporous Wall and Inner Channel as Efficient Scaffolds for Lithium-Sulfur Batteries[J]. Adv. Funct. Mater., 2016,26(10):1571-1579. doi: 10.1002/adfm.201504835

    11. [11]

      Wang D T, Wang K, Wu H C, Luo Y F, Sun L, Zhao Y X, Wang J, Jia L J, Jiang K L, Li Q Q, Fan S S, Wang J P. CO2 Oxidation of Car-bon Nanotubes for Lithium-Sulfur Batteries with Improved Electro-chemical Performance[J]. Carbon, 2018,132:370-379. doi: 10.1016/j.carbon.2018.02.048

    12. [12]

      Yun J H, Kim J H, Kim D K, Lee H W. Suppressing Polysulfide Dis-solution via Cohesive Forces by Interwoven Carbon Nanofibers for High-Areal-Capacity Lithium-Sulfur Batteries[J]. Nano Lett., 2018,18(1):475-481. doi: 10.1021/acs.nanolett.7b04425

    13. [13]

      Zheng G Y, Yang Y, Cha J J, Hong S S, Cui Y. Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries[J]. Nano Lett., 2011,11(10):4462-4467. doi: 10.1021/nl2027684

    14. [14]

      Wu F, Shi L L, Mu D B, Xu H L, Wu B R. A Hierarchical Carbon Fiber/Sulfur Composite as Cathode Material for Li-S Batteries[J]. Carbon, 2015,86:146-155. doi: 10.1016/j.carbon.2015.01.026

    15. [15]

      Song J X, Yu Z X, Gordin M L, Wang D H. Advanced Sulfur Cath-ode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium-Sulfur Batteries[J]. Nano Lett., 2016,16(2):864-870. doi: 10.1021/acs.nanolett.5b03217

    16. [16]

      Vélez P, Para M L, Luque G L, Barraco D, Leiva E P M. Modeling of Substitutionally Modified Graphene Structures to Prevent the Shuttle Mechanism in Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2019,309:402-414. doi: 10.1016/j.electacta.2019.04.062

    17. [17]

      Ma L B, Chen R P, Zhu G Y, Hu Y, Wang Y R, Chen T, Liu J, Jin Z. Cerium Oxide Nanocrystal Embedded Bimodal Micromesoporous Nitrogen-Rich Carbon Nanospheres as Effective Sulfur Host for Lithium-Sulfur Batteries[J]. ACS Nano, 2017,11(7):7274-7283. doi: 10.1021/acsnano.7b03227

    18. [18]

      Gueon D, Hwang J T, Yang S B, Cho E, Sohn K, Yang D K, Moon J H. Spherical Macroporous Carbon Nanotube Particles with Ultrahigh Sulfur Loading for Lithium-Sulfur Battery Cathodes[J]. ACS Nano, 2018,12(1):226-233. doi: 10.1021/acsnano.7b05869

    19. [19]

      Fang R P, Li G X, Zhao S Y, Yin L C, Du K, Hou P X, Wang S G, Cheng H M, Liu C, Li F. Single-Wall Carbon Nanotube Network Enabled Ultrahigh Sulfur-Content Electrodes for High-Performance Lithium-Sulfur Batteries[J]. Nano Energy, 2017,42:205-214. doi: 10.1016/j.nanoen.2017.10.053

    20. [20]

      Sun L, Wang D T, Luo Y F, Wang K, Kong W B, Wu Y, Zhang L N, Jiang K L, Li Q Q, Zhang Y H, Wang J P, Fan S S.. Sulfur Embedded in a Mesoporous Carbon Nanotube Network as a Binder-Free Elec-trode for High -Performance Lithium-Sulfur Batteries.[J]. ACS Nano, 2016,10(1):1300-1308. doi: 10.1021/acsnano.5b06675

    21. [21]

      Ni W, Liang F X, Liu J G, Qu X Z, Zhang C L, Li J L, Wang Q, Yang Z Z. Polymer Nanotubes toward Gelating Organic Chemicals[J]. Chem. Commun., 2011,47:4727-4729. doi: 10.1039/c1cc10900f

    22. [22]

      Zhou H J, Liu L, Wang X C, Liang F X, Bao S J, Lv D M, Tang Y K, Jia D Z. Multimodal Porous CNT@TiO2 Nanocables with Superior Performance in Lithium-Ion Batteries[J]. J. Mater. Chem. A, 2013,1:8525-8528. doi: 10.1039/c3ta11540b

    23. [23]

      Tang Y K, Liu L, Wang X C, Zhou H J, Jia D Z. High-Yield Bamboo-like Porous Carbon Nanotubes with High-Rate Capability as Anodes for Lithium-Ion Batteries[J]. RSC Adv., 2014,4:44852-44857. doi: 10.1039/C4RA05978F

    24. [24]

      Liu W, Tang Y K, Sun Z P, Gao S S, Ma J H, Liu L.. A Simple Approach of Constructing Sulfur-Containing Porous Carbon Nano-tubes for High-Performance Supercapacitors.[J]. Carbon, 2017,115:754-762. doi: 10.1016/j.carbon.2017.01.070

    25. [25]

      Lee S Y, Choi Y, Kim J K, Lee S J, Bae J S, Jeong E D. Biomass-Garlic-Peel-Derived Porous Carbon Framework as a Sulfur Host for Lithium-Sulfur Batteries[J]. J. Ind. Eng. Chem., 2021,94:272-281. doi: 10.1016/j.jiec.2020.10.046

    26. [26]

      Zhang B, Qin X, Li G R, Gao X P. Enhancement of Long Stability of Sulfur Cathode by Encapsulating Sulfur into Micropores of Carbon Spheres[J]. Energy Environ. Sci., 2010,3:1531-1537. doi: 10.1039/c002639e

    27. [27]

      Fu Y Z, Su Y S, Manthiram A. Sulfur-Carbon Nanocomposite Cath-odes Improved by an Amphiphilic Block Copolymer for High-Rate Lithium -Sulfur Batteries[J]. ACS Appl. Mater. Interfaces, 2012,4(11):6046-6052. doi: 10.1021/am301688h

    28. [28]

      Su Y S, Fu Y Z, Manthiram A. Self-Weaving Sulfur-Carbon Composite Cathodes for High Rate Lithium-Sulfur Batteries[J]. Phys. Chem. Chem. Phys., 2012,14:14495-14499. doi: 10.1039/c2cp42796f

    29. [29]

      Zhang X Q, Yuan W, Yang Y, Chen Y, Tang Z H, Wang C, Yuan Y H, Ye Y T, Wu Y P, Tang Y.. Immobilizing Polysulfide by In Situ Topochemical Oxidation Derivative TiC@Carbon -Included TiO2 Core-Shell Sulfur Hosts for Advanced Lithium-Sulfur Batteries.[J]. Small, 2020,16(52)e2005998. doi: 10.1002/smll.202005998

    30. [30]

      Faheem M, Li W L, Ahmad N, Yang L, Tufail M K, Zhou Y D, Zhou L, Chen R J, Yang W. Chickpea Derived Co Nanocrystal Encapsulat-ed in 3D Nitrogen-Doped Mesoporous Carbon: Pressure Cooking Synthetic Strategy and Its Application in Lithium-Sulfur Batteries[J]. J. Colloid Interface Sci., 2021,585:328-336.

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    4. [4]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    5. [5]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    6. [6]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    7. [7]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    12. [12]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

Metrics
  • PDF Downloads(9)
  • Abstract views(915)
  • HTML views(259)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return