Citation: Zi-Xuan WANG, Yuan-Yuan JIANG, Ru-Ru ZHOU, Ping CHEN, Zhao-Yin HOU. Preparation and Application of the Bifunctional Pd/ZrHP Catalyst for Selective Hydrogenation of Phenol[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 812-820. doi: 10.11862/CJIC.2022.087 shu

Preparation and Application of the Bifunctional Pd/ZrHP Catalyst for Selective Hydrogenation of Phenol

Figures(12)

  • Hydrogenation of phenol to cyclohexanone is a vital step in the production of synthetic fiber (nylon). In this work, a layered-structured solid acid (zirconium hydrogen phosphate, ZrHP) supported Pd catalyst was synthe- sized in a microwave method. The structure and property of Pd/ZrHP catalyst were characterized via X-ray diffrac- tion (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), nitro- gen adsorption- desorption, X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD) technologies. It was found that Pd/ZrHP catalyst exhibited better performance than the Pd-based catalysts supported by traditional oxide (Al2O3, SiO2, MgO), molecular sieve (H-Beta), and active carbon (XC-72) under the mild condi- tion (100 ℃, 1.0 MPa H2). The specific activity of the surface Pd atom in Pd/ZrHP reached 612.2 h-1, and it could be recycled five times without obvious deactivation. The synergistic effect between Pd metal and the acidic sites on ZrHP surface might be the main reason for the selective formation of cyclohexanone.
  • 加载中
    1. [1]

      Lin C J, Huang S H, Lai N C, Yang C M. Efficient Room-Temperature Aqueous-Phase Hydrogenation of Phenol to Cyclohexanone Catalyzed by Pd Nanoparticles Supported on Mesoporous MMT-1 Silica with Unevenly Distributed Functionalities[J]. ACS Catal., 2015,5(7):4121-4129. doi: 10.1021/acscatal.5b00380

    2. [2]

      He J, Lu X H, Shen Y, Jing R, Nie R F, Zhou D, Xia Q H. Highly Selective Hydrogenation of Phenol to Cyclohexanol over Nano Silica Supported Ni Catalysts in Aqueous Medium[J]. J. Mol. Catal., 2017,440:87-95. doi: 10.1016/j.mcat.2017.07.016

    3. [3]

      Guo Q, Mo S G, Liu P X, Zheng W D, Qin R X, Xu C F, Wu Y Y Q, Wu B H, Zheng N F. Air-Promoted Selective Hydrogenation of Phenol to Cyclohexanone at Low Temperature over Pd-Based Nanocatalysts[J]. Sci. China Chem., 2017,60(11):1444-1449. doi: 10.1007/s11426-017-9095-4

    4. [4]

      Gao Y N, Hensen E J M. Highly Active and Stable Spinel-Oxide Sup-ported Gold Catalyst for Gas-Phase Selective Aerobic Oxidation of Cyclohexanol to Cyclohexanone[J]. Catal. Commun., 2018,17:53-56.

    5. [5]

      Liu H Z, Jiang T, Han B X, Liang S G, Zhou Y X. Selective Phenol Hydrogenation to Cyclohexanone Over a Dual Supported Pd-Lewis Acid Catalyst[J]. Science, 2009,326(5957):1250-1252. doi: 10.1126/science.1179713

    6. [6]

      Jiang H, Qu Z Y, Li Y, Huang J, Chen R Z, Xing W H. One-Step Semi-Continuous Cyclohexanone Production via Hydrogenation of Phenol in a Submerged Ceramic Membrane Reactor[J]. Chem. Eng. J., 2016,284:724-732. doi: 10.1016/j.cej.2015.09.037

    7. [7]

      Zhao C C, Zhang Z Y, Liu Y R, Shang N Z, Wang H J, Wang C, Gao Y J. Palladium Nanoparticles Anchored on Sustainable Chitin for Phenol Hydrogenation to Cyclohexanone[J]. ACS Sustainable Chem. Eng., 2020,8(32):12304-12312. doi: 10.1021/acssuschemeng.0c04751

    8. [8]

      Shafaghat H, Rezaei P S, Daud W M A W. Catalytic Hydrogenation of Phenol, Cresol and Guaiacol over Physically Mixed Catalysts of Pd/C and Zeolite Solid Acids[J]. RSC Adv., 2015,5(43):33990-33998. doi: 10.1039/C5RA00367A

    9. [9]

      Wang H J, Zhao F Y, Fujita S I, Arai M. Hydrogenation of Phenol in ScCO2 over Carbon Nanofiber Supported Rh Catalyst[J]. Catal. Commun., 2008,9(3):362-368. doi: 10.1016/j.catcom.2007.07.002

    10. [10]

      Xiang Y Z, Ma L, Lu C S, Zhang Q F, Li X N. Aqueous System for the Improved Hydrogenation of Phenol and Its Derivatives[J]. Green Chem., 2008,10(9):939-943. doi: 10.1039/b803217c

    11. [11]

      Zhang Z Z, Xu M K, Ho W K, Zhang X W, Yang Z Y, Wang X X. Simultaneous Excitation of PdCl2 Hybrid Mesoporous g-C3N4 Molecular/Solid-State Photocatalysts for Enhancing the Visible-Light-Induced Oxidative Removal of Nitrogen Oxides[J]. Appl. Catal. B, 2016,184:174-181. doi: 10.1016/j.apcatb.2015.11.034

    12. [12]

      Yang X, Du L, Liao S J, Li Y X, Song H Y. High-Performance Gold-Promoted Palladium Catalyst towards the Hydrogenation of Phenol with Mesoporous Hollow Spheres as Support[J]. Catal. Commun., 2012,17:29-33. doi: 10.1016/j.catcom.2011.10.006

    13. [13]

      Nelson N C, Manzano J S, Sadow A D, Overbury S H, Slowing I I. Selective Hydrogenation of Phenol Catalyzed by Palladium on High-Surface-Area Ceria at Room Temperature and Ambient Pressure[J]. ACS Catal., 2015,5(4):2051-2061. doi: 10.1021/cs502000j

    14. [14]

      YAN R H, CAI W Q, ZHUO J L, WANG X, LI M Z. One-Pot Solvent Evaporation Induced Self-Assembly Synthesis of Pd-Ba-Zn/γ-Al 2O3 Catalyst with Homogeneous Distribution of the Promoters and Its Hydrogenation Performance of Anthraquinone[J]. Chemical Industry and Engineering Progress, 2018,37(3):1014-1020.  

    15. [15]

      Zhong J W, Chen J Z, Chen L M. Selective Hydrogenation of Phenol and Related Derivatives[J]. Catal. Sci. Technol., 2014,4(10):3555-3569. doi: 10.1039/C4CY00583J

    16. [16]

      Mahata N, Vishwanathan V.. Influence of Palladium Precursors on Structural Properties and Phenol Hydrogenation Characteristics of Supported Palladium Catalysts[J]. J. Catal., 2000,196(2):262-270. doi: 10.1006/jcat.2000.3041

    17. [17]

      Zhao C, Yu Y Z, Jentys A, Lercher J A.. Understanding the Impact of Aluminum Oxide Binder on Ni/HZSM-5 for Phenol Hydrodeoxygen-ation[J]. Appl. Catal. B, 2013,132:282-292.

    18. [18]

      Zhao M S, Shi J J, Hou Z Y.. Selective Hydrogenation of Phenol to Cyclohexanone in Water over Pd Catalysts Supported on Amberlyst- 45[J]. Chin. J. Catal., 2016,37(2):234-239. doi: 10.1016/S1872-2067(15)60997-4

    19. [19]

      Li X W, Jiang Y Y, Zhou R R, Hou Z Y.. Layered α-Zirconium Phos-phate: An Efficient Catalyst for the Synthesis of Solketal from Glycerol[J]. Appl. Clay Sci., 2019,174:120-126. doi: 10.1016/j.clay.2019.03.034

    20. [20]

      Bashir A, Ahad S, Malik L A, Qureashi A, Manzoor , T , Dar G N, Pandith A H. Revisiting the Old and Golden Inorganic Material, Zir-conium Phosphate: Synthesis, Intercalation, Surface Functionaliza-tion, and Metal Ion Uptake[J]. Ind. Eng. Chem. Res., 2020,59(52):22353-22397. doi: 10.1021/acs.iecr.0c04957

    21. [21]

      Li D F, Ni W X, Hou Z S. Conversion of Biomass to Chemicals over Zirconium Phosphate-Based Catalysts[J]. Chin. J. Catal., 2017,38(11):1784-1793. doi: 10.1016/S1872-2067(17)62908-5

    22. [22]

      Li N, Tompsett G A, Huber G W.. Renewable High -Octane Gasoline by Aqueous-Phase Hydrodeoxygenation of C5 and C6 Carbohydrates over Pt/Zirconium Phosphate Catalysts.[J]. ChemSusChem, 2010,3(10):1154-1157. doi: 10.1002/cssc.201000140

    23. [23]

      Gong H H, Zhou C, Cui Y, Dai S, Zhao X G, Lou R H, An P F, Li H, Wang H F, Hou Z S. Direct Transformation of Glycerol to Propanal using Zirconium Phosphate-Supported Bimetallic Catalysts[J]. ChemSusChem, 2020,13(18):4954-4966. doi: 10.1002/cssc.202001600

    24. [24]

      Lou R H, Zhao X G, Gong H H, Qian W, Li D F, Chen M Y, Cui K, Wang J J, Hou Z S. Effect of Tungsten Modification on Zirconium Phosphate-Supported Pt Catalyst for Selective Hydrogenolysis of Glycerol to 1-Propanol[J]. Energy Fuels, 2020,34(7):8707-8717. doi: 10.1021/acs.energyfuels.0c00645

    25. [25]

      Zhao X G, Lin Q, Xiao W D. Characterization of Pd-CeO2/α-Alumina Catalyst for Synthesis of Dimethyl Oxalate[J]. Appl. Catal. A, 2005,284(1/2):253-257.

    26. [26]

      Hu Y, Yang H M, Zhang Y C, Hou Z S, Wang X R, Qiao Y X, Li H, Feng B, Huang Q F. The Functionalized Ionic Liquid-Stabilized Pal-ladium Nanoparticles Catalyzed Selective Hydrogenation in Ionic Liquid[J]. Catal. Commun., 2009,10(14):1903-1907. doi: 10.1016/j.catcom.2009.06.025

    27. [27]

      LU Z Y, HONG Y Y, DAI Y Y, LI X Q, YAN X H. Synthesis and Characterization of Palladium Nanoparticles with High Proportion of Exposed (111) Facet for Hydrogenation Performance[J]. Chinese J. Inorg. Chem., 2021,37(6):1143-1151.  

    28. [28]

      Zhu W W, Yang H M, Yu Y Y, Hua L, Li H, Feng B, Hou Z S. Amphiphilic Ionic Liquid Stabilizing Palladium Nanoparticles for Highly Efficient Catalytic Hydrogenation[J]. Phys. Chem. Chem. Phys., 2011,13(30):13492-13500. doi: 10.1039/c1cp20255c

    29. [29]

      Jin D F, Hou Z Y, Zhang L W, Zheng X M.. Selective Synthesis of para-para'-Dimethyl Methane over H -Beta Zeolite[J]. Catal. Today, 2008,131(1/4):378-384.

    30. [30]

      Nie R F, Lei H, Pan S Y, Wang L N, Fei J H, Hou Z Y. Core-Shell Structured CuO-ZnO@H-ZSM-5 Catalysts for CO Hydrogenation to Dimethyl Ether[J]. Fuel, 2012,96(1):419-425.

    31. [31]

      Wang Y, Yao J, Li H R, Su D S, Antonietti M. Highly Selective Hydrogenation of Phenol and Derivatives over a Pd@Carbon Nitride Catalyst in Aqueous Media[J]. J. Am. Chem. Soc., 2011,133(8):2362-2365. doi: 10.1021/ja109856y

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    5. [5]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    6. [6]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    7. [7]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    8. [8]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    9. [9]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    12. [12]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(10)
  • Abstract views(638)
  • HTML views(97)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return