Fabrication and Photoelectrochemical Cathodic Protection Effect of Bi2S3/CdSe Co-modified TiO2 Nanotube Film
- Corresponding author: Guo-Kun LIU, guokunliu@xmu.edu.cn Rong-Gui DU, rgdu@xmu.edu.cn
Citation: Xia WANG, Zi-Chao GUAN, Hai-Yan SHI, Piao JIN, Guo-Kun LIU, Rong-Gui DU. Fabrication and Photoelectrochemical Cathodic Protection Effect of Bi2S3/CdSe Co-modified TiO2 Nanotube Film[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 861-872. doi: 10.11862/CJIC.2022.085
Chen X B, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev., 2007,107(7):2891-2959. doi: 10.1021/cr0500535
Lee K, Mazare A, Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes[J]. Chem. Rev., 2014,114(19):9385-9454. doi: 10.1021/cr500061m
Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P. Titanium Dioxide Nanomaterials for Photovoltaic Applications[J]. Chem. Rev., 2014,114(19):10095-10130. doi: 10.1021/cr400606n
Wang Q Y, Li H L, Yu X L, Jia Y, Chang Y, Gao S M. Morphology Regulated Bi2WO6 Nanoparticles on TiO2 Nanotubes by Solvothermal Sb3+ Doping as Effective Photocatalysts for Wastewater Treatment[J]. Electrochim. Acta, 2020,330135167. doi: 10.1016/j.electacta.2019.135167
Wang X T, Xu H, Nan Y B, Sun X, Duan J Z, Huang Y L, Hou B R. Research Progress of TiO2 Photocathodic Protection to Metals in Marine Environment[J]. J. Oceanol. Limnol., 2020,38(10):1018-1044.
Yuan J N, Tsujikawa S. Characterization of Sol-Gel-Derived TiO2 Coatings and Their Photoeffects on Copper Substrates[J]. J. Electrochem. Soc., 1995,142(10):3444-3450. doi: 10.1149/1.2050002
ZHANG J, ZHU Y F, GUO Y, XU L, QI H Q, ZHOU J Z, DU R G, LIN C J. Influence of Electrolytes on the Photocathodic Protection Effect of TiO2 Nanotube Films for Stainless Steel[J]. Chem. J. Chinese Universities, 2013,34(10):2408-2414. doi: 10.7503/cjcu20130080
Cui S W, Yin X Y, Yu Q L, Liu Y P, Wang D A, Zhou F. Polypyrrole Nanowire/TiO2 Nanotube Nanocomposites as Photoanodes for Photocathodic Protection of Ti Substrate and 304 Stainless Steel under Visible Light[J]. Corros. Sci., 2015,98:471-477. doi: 10.1016/j.corsci.2015.05.059
Jin P, Guan Z C, Wang H P, Wang X, Liu G K, Du R G. Bi2S3/rGO Co-modified TiO2 Nanotube Photoanode for Enhanced Photoelectrochemical Cathodic Protection of Stainless Steel[J]. J. Photochem. Photobiol. A, 2021,407113060. doi: 10.1016/j.jphotochem.2020.113060
Feng C, Chen Z Y, Jing J P, Sun M M, Lu G Y, Tian J, Hou J. A Novel TiO2 Nanotube Arrays/MgTixOy Multiphase-Heterojunction Film with High Efficiency for Photoelectrochemical Cathodic Protection[J]. Corros. Sci., 2020,166108441. doi: 10.1016/j.corsci.2020.108441
JIN P, GUAN Z C, LIANG Y, TAN K, WANG X, SONG G L, DU R G. Photocathodic Protection on Stainless Steel by Heterostructured NiO/TiO2 Nanotube Array Film with Charge Storage Capability[J]. Acta Phys.‑Chim. Sin., 2021,37(3)1906033.
Shao J, Wang X T, Xu H, Zhao X D, Niu J M, Zhang Z D, Huang Y L, Duan J Z. Photoelectrochemical Performance of SnS2 Sensitized TiO2 Nanotube for Protection of 304 Stainless Steel[J]. J. Electrochem. Soc., 2021,168(1)016511. doi: 10.1149/1945-7111/abdc77
Cui X Q, Li H, Yang Z Y, Li Y H, Zhang P F, Zheng Z M, Wang Y Q, Li J R, Zhang X P. A Novel CaIn2S4/TiO2 NTAs Heterojunction Photoanode for Highly Efficient Photocathodic Protection Performance of 316 SS under Visible Light[J]. Nanotechnology, 2021,32(39)395702. doi: 10.1088/1361-6528/ac0b1a
Guo S Y, Chi L F, Zhao T J, Nan Y B, Sun X, Huang Y L, Hou B R, Wang X T. Construction of MOF/TiO2 Nanocomposites with Efficient Visible-Light-Driven Photocathodic Protection[J]. J. Electroanal. Chem., 2021,880114915. doi: 10.1016/j.jelechem.2020.114915
Jia Y, Liu P B, Wang Q Y, Wu Y, Cao D D, Qiao Q A. Construction of Bi2S3-BiOBr Nanosheets on TiO2 NTA as the Effective Photocatalysts: Pollutant Removal, Photoelectric Conversion and Hydrogen Generation[J]. J. Colloid Interface Sci., 2021,585:459-469. doi: 10.1016/j.jcis.2020.10.027
Arifin K, Yunus R M, Minggu L J, Kassim M B. Improvement of TiO2 Nanotubes for Photoelectrochemical Water Splitting: Review[J]. Int. J. Hydrogen Energy, 2021,46(7):4998-5024. doi: 10.1016/j.ijhydene.2020.11.063
Li H, Song W Z, Cui X Q, Li Y H, Hou B R, Zhang X P, Wang Y Q, Cheng L J, Zhang P F, Li J R. AgInS2 and Graphene Co-sensitized TiO2 Photoanodes for Photocathodic Protection of Q235 Carbon Steel under Visible Light[J]. Nanotechnology, 2020,31(30)305704. doi: 10.1088/1361-6528/ab85eb
WANG L, SHI H, ZHANG H, CHEN Q X, JIN B D, ZHANG H Z. ZnIn2S4/TiO2/Ag Composite Photocatalyst: Preparation and Performance for Hydrogen Production from Water Splitting[J]. Chinese J. Inorg. Chem., 2021,37(9):1571-1578.
Li Y J, Ding L, Liang Z Q, Xue Y J, Cui H Z, Tian J. Synergetic Effect of Defects Rich MoS2 and Ti3C2 MXene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2[J]. Chem. Eng. J., 2020,383123178. doi: 10.1016/j.cej.2019.123178
Li H, So ng, W Z, Cui X Q, Li Y H, Hou B R, Cheng L J, Zhang P F. Preparation of SnIn4S8/TiO2 Nanotube Photoanode and Its Photocathodic Protection for Q235 Carbon Steel Under Visible Light[J]. Nanoscale Res. Lett., 2021,16(1)10. doi: 10.1186/s11671-020-03447-1
Shen Q Q, Gao G X, Xue J B, Li Y, Li Q, Zhao Q, Liu X G, Jia H S. Photoelectrocatalytic Hydrogen Production of Heterogeneous Photoelectrodes with Different System Configurations of CdSe Nanoparticles, Au Nanocrystals and TiO2 Nanotube Arrays[J]. Int. J. Hydrogen Energy, 2020,45(51):26688-26700. doi: 10.1016/j.ijhydene.2020.07.015
Wang W C, Li F, Zhang D Q, Leung D Y C, Li G S. Photoelectrocatalytic Hydrogen Generation and Simultaneous Degradation of Organic Pollutant via CdSe/TiO2 Nanotube Arrays[J]. Appl. Surf. Sci., 2016,362:490-497. doi: 10.1016/j.apsusc.2015.11.228
Chong B H, Zhu W, Hou X H. Epitaxial Hetero-Structure of CdSe/TiO2 Nanotube Arrays with PEDOT as a Hole Transfer Layer for Photoelectrochemical Hydrogen Evolution[J]. J. Mater. Chem. A, 2017,5(13):6233-6244. doi: 10.1039/C6TA10202F
Xue J B, Shen Q Q, Yang F, Liang W, Liu X G. Investigation on the Influence of pH on Structure and Photoelectrochemical Properties of CdSe Electrolytically Deposited into TiO2 Nanotube Arrays[J]. J. Alloys Compd., 2014,607:163-168. doi: 10.1016/j.jallcom.2014.04.041
Ayal A K, Zainal Z, Lim H N, Talib Z A, Lim Y C, Chang S K, Holi A M. Fabrication of CdSe Nanoparticles Sensitized TiO2 Nanotube Arrays via Pulse Electrodeposition for Photoelectrochemical Application[J]. Mater. Res. Bull., 2018,106:257-262. doi: 10.1016/j.materresbull.2018.05.040
Shen Y C, Lu Z H, Wei Y. Modification of TiO2 Microporous Electrode with Chemical Bath Deposited Quantum-Size CdSe Particles[J]. Chem. J. Chinese Universities, 1995,16(11):50-55.
Akimoto M, Shen Q, Hayase S, Toyoda T. Photoacoustic Spectroscopy of TiO2 Nanotube Electrode Adsorbed with CdSe Quantum Dots and Its Photovoltaic Properties[J]. Jpn. J. Appl. Phys., 2014,53(7S)07KB08. doi: 10.7567/JJAP.53.07KB08
Li Z, Yu L B, Liu Y B, Sun S Q. CdS/CdSe Quantum Dots Co-sensitized TiO2 Nanowire/Nanotube Solar Cells with Enhanced Efficiency[J]. Electrochim. Acta, 2014,129:379-388. doi: 10.1016/j.electacta.2014.02.145
Shin K, Seok S I, Im S H, Park J H. CdS or CdSe Decorated TiO2 Nanotube Arrays from Spray Pyrolysis Deposition: Use in Photoelectrochemical Cells[J]. Chem. Commun., 2010,46(14)2385. doi: 10.1039/b923022j
Ayal A K, Zainal Z, Lim H N, Talib Z A, Lim Y C, Chang S K, Samsudin N A, Holi A M, Amin W N M. Electrochemical Deposition of CdSe-Sensitized TiO2 Nanotube Arrays with Enhanced Photoelectrochemical Performance for Solar Cell Application[J]. J. Mater. Sci.: Mater. Electron., 2016,27(5):5204-5210. doi: 10.1007/s10854-016-4414-8
Pawar S A, Patil D S, Jung H R, Park J Y, Mali S S, Hong C K, Shin J C, Patil P S, Kim J H. Quantum Dot Sensitized Solar Cell Based on TiO2/CdS/CdSe/ZnS Heterostructure[J]. Electrochim. Acta, 2016,203:74-83. doi: 10.1016/j.electacta.2016.04.029
Ayal A K, Zainal Z, Lim H N, Talib Z A, Lim Y C, Chang S K, Holi A M. Photocurrent Enhancement of Heat Treated CdSe-Sensitized Titania Nanotube Photoelectrode[J]. Opt. Quantum. Electron., 2017,49(4)164. doi: 10.1007/s11082-017-0985-8
Qiao J L, Wang Q Y, Ye J X, Xiao Y K. Enhancing Photoelectrochemical Performance of TiO2 Nanotube Arrays by CdS and Bi2S3 Co-Sensitization[J]. J. Photochem. Photobiol. A, 2016,319:34-39.
Hu J, Guan Z C, Liang Y, Zhou J Z, Liu Q, Wang H P, Zhang H, Du R G. Bi2S3 Modified Single Crystalline Rutile TiO2 Nanorod Array Films for Photoelectrochemical Cathodic Protection[J]. Corros. Sci., 2017,125:59-67. doi: 10.1016/j.corsci.2017.06.003
Wan Y L, Han M M, Yu L M, Jia J H, Yi G W. Fabrication and Photoelectrochemical Properties of TiO2/CuInS2/Bi2S3 Core/Shell/Shell Nanorods Electrodes[J]. RSC Adv., 2015,5(96):78902-78909. doi: 10.1039/C5RA14548A
Guo R N, Zhu G X, Gao Y J, Li B, Gou J F, Cheng X W. Synthesis of 3D Bi2S3/TiO2 NTAs Photocatalytic System and Its High Visible Light Driven Photocatalytic Performance for Organic Compound Degradation[J]. Sep. Purif. Technol., 2019,226:315-322. doi: 10.1016/j.seppur.2019.05.067
Mazierski P, Nadolna J, Nowaczyk G, Lisowski W, Winiarski M J, Klimczuk T, Kobylański M P, Jurga S, Zaleska-Medynska A. Highly Visible-Light-Photoactive Heterojunction Based on TiO2 Nanotubes Decorated by Pt Nanoparticles and Bi2S3 Quantum Dots[J]. J. Phys. Chem. C, 2017,121(32):17215-17225. doi: 10.1021/acs.jpcc.7b03895
Chen C H, Shieh J, Liao H Y, Shyue J J. Construction of Titania-Ceria Nanostructured Composites with Tailored Heterojunction for Photocurrent Enhancement[J]. J. Eur. Ceram. Soc., 2014,34(6):1523-1535. doi: 10.1016/j.jeurceramsoc.2013.12.019
Hu J, Liu Q, Zhang H, Chen C D, Liang Y, Du R G, Lin C J. Facile Ultrasonic Deposition of SnO2 Nanoparticles on TiO2 Nanotube Films for Enhanced Photoelectrochemical Performances[J]. J. Mater. Chem. A, 2015,3(45):22605-22613. doi: 10.1039/C5TA06752A
Lv J, Su L L, Wang H G, Liu L J, Xu G Q, Wang D M, Zheng Z X, Wu Y C. Enhanced Visible Light Photocatalytic Activity of TiO2 Nanotube Arrays Modified with CdSe Nanoparticles by Electrodeposition Method[J]. Surf. Coat. Technol., 2014,242:20-28. doi: 10.1016/j.surfcoat.2014.01.006
Haldar K K, Sinha G, Lahtinen J, Patra A. Hybrid Colloidal Au-CdSe Pentapod Heterostructures Synthesis and Their Photocatalytic Properties[J]. ACS Appl. Mater. Interfaces, 2012,4(11):6266-6272. doi: 10.1021/am301859b
Cao J, Xu B Y, Lin H L, Luo B D, Chen S F. Novel Heterostructured Bi2S3/BiOI Photocatalyst: Facile Preparation, Characterization and Visible Light Photocatalytic Performance[J]. Dalton Trans., 2012,41(37):11482-11490. doi: 10.1039/c2dt30883e
Lei Y, Zhang L D, Meng G W, Li G H, Zhang X Y, Liang C H, Chen W, Wang S X. Preparation and Photoluminescence of Highly Ordered TiO2 Nanowire Arrays[J]. Appl. Phys. Lett., 2001,78(8):1125-1127. doi: 10.1063/1.1350959
Li D, Haneda H, Labhsetwar N K, Hishita S, Ohashi N. Visible-Light-Driven Photocatalysis on Fluorine-Doped TiO2 Powders by the Creation of Surface Oxygen Vacancies[J]. Chem. Phys. Lett., 2005,401(4/5/6):579-584.
Park S M, Yoo J S. Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements[J]. Anal. Chem., 2003,75(21):455A-461A. doi: 10.1021/ac0313973
GUO Y, JIN P, SHAO M H, DONG S G, DU R G, LIN C J. Effect of an Environment-Friendly Diisooctyl Sebacate-Based Mixed Corrosion Inhibitor on Reinforcing Steel[J]. Acta Phys.‑Chim. Sin., 2022,38(4)2003033.
Qu D Y, Wang G W, Kafle J, Harris J, Crain L, Jin Z H, Zheng D. Electrochemical Impedance and Its Applications in Energy-Storage Systems[J]. Small Methods, 2018,2(8)1700342. doi: 10.1002/smtd.201700342
Wang H P, Guan Z C, Shi H Y, Wang X, Jin P, Song G L, Du R G. Ag/SnO2/TiO2 Nanotube Composite Film Used in Photocathodic Protection for Stainless Steel[J]. J. Photochem. Photobiol. A, 2021,4171133353.
Wang X P, Shao M H, Ye C Q, Dong S G, Du R G, Lin C J. Study on Effect of Chloride Ions on Corrosion Behavior of Reinforcing Steel in Simulated Polluted Concrete Pore Solutions by Scanning Micro-Reference Electrode Technique[J]. J. Electroanal. Chem., 2021,895115454. doi: 10.1016/j.jelechem.2021.115454
Robel I, Subramanian V, Kuno M, Kamat P V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films[J]. J. Am. Chem. Soc., 2006,128(7):2385-2393. doi: 10.1021/ja056494n
Cheng L Y, Ding H M, Chen C H, Wang N N. Ag2 S/Bi2S3 Co-sensitized TiO2 Nanorod Arrays Prepared on Conductive Glass as a Photoanode for Solar Cells[J]. J. Mater. Sci.: Mater. Electron., 2016,27(4):3234-3239. doi: 10.1007/s10854-015-4149-y
Wang Q Y, Liu Z Y, Jin R C, Wang Y, Gao S M. SILAR Preparation of Bi2S3 Nanoparticles Sensitized TiO2 Nanotube Arrays for Efficient Solar Cells and Photocatalysts[J]. Sep. Purif. Technol., 2019,210:798-803. doi: 10.1016/j.seppur.2018.08.050
Li Z X, Xie Y L, Xu H, Wang T M, Xu Z G, Zhang H L.. Expanding the Photoresponse Range of TiO2 Nanotube Arrays by CdS/CdSe/ZnS Quantum Dots Co-modification.[J]. J. Photochem. Photobiol. A, 2011,224(1):25-30. doi: 10.1016/j.jphotochem.2011.09.002
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
Hongye Bai , Lihao Yu , Jinfu Xu , Xuliang Pang , Yajie Bai , Jianguo Cui , Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096
Wenhao Wang , Guangpu Zhang , Qiufeng Wang , Fancang Meng , Hongbin Jia , Wei Jiang , Qingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193
Mengli Xu , Zhenmin Xu , Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305
Yang Xia , Kangyan Zhang , Heng Yang , Lijuan Shi , Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012
Cheng PENG , Jianwei WEI , Yating CHEN , Nan HU , Hui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Yifen He , Chao Qu , Na Ren , Dawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262
Maosen Xu , Pengfei Zhu , Qinghong Cai , Meichun Bu , Chenghua Zhang , Hong Wu , Youzhou He , Min Fu , Siqi Li , Xingyan Liu . In-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Zhengli Hu , Jia Wang , Yi-Lun Ying , Shaochuang Liu , Hui Ma , Wenwei Zhang , Jianrong Zhang , Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072
Ya-Nan Yang , Zi-Sheng Li , Sourav Mondal , Lei Qiao , Cui-Cui Wang , Wen-Juan Tian , Zhong-Ming Sun , John E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Insets in (a, b): corresponding cross-sectional SEM images
Inset: corresponding enlarged plots