Citation: Xia WANG, Zi-Chao GUAN, Hai-Yan SHI, Piao JIN, Guo-Kun LIU, Rong-Gui DU. Fabrication and Photoelectrochemical Cathodic Protection Effect of Bi2S3/CdSe Co-modified TiO2 Nanotube Film[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 861-872. doi: 10.11862/CJIC.2022.085 shu

Fabrication and Photoelectrochemical Cathodic Protection Effect of Bi2S3/CdSe Co-modified TiO2 Nanotube Film

Figures(10)

  • In this work, Bi2S3 and CdSe were used to modify a TiO2 nanotube film for obtaining a Bi2S3/CdSe/TiO2 composite film with enhanced photoelectrochemical performance. The TiO2 nanotube array film was fabricated on a Ti foil by anodic oxidation. CdSe was formed on the TiO2 nanotube film by constant current electrodeposition, and then Bi2S3 was prepared on the binary CdSe/TiO2 composite film by successive ionic layer adsorption and reaction to obtain a Bi2S3/CdSe co-modified TiO2 nanotube composite film with a cascade band structure. The results showed that the Bi2S3/CdSe/TiO2 nanotube composite film showed enhanced photoabsorption in the visible light range, and its photoelectrochemical performance was greatly improved. Under white light illumination, the photocurrent density of this ternary composite film reached 670 µA·cm-2, which was about 17.6 times that of the TiO2 nanotube film. The Bi2S3/CdSe/TiO2 composite film could provide excellent photoelectrochemical cathodic protection for 403 stainless steel (403SS) in a 0.5 mol·L-1 NaCl solution, and reduced the potential of 403SS by 690 mV relative to its corrosion potential.
  • 加载中
    1. [1]

      Chen X B, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev., 2007,107(7):2891-2959. doi: 10.1021/cr0500535

    2. [2]

      Lee K, Mazare A, Schmuki P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes[J]. Chem. Rev., 2014,114(19):9385-9454. doi: 10.1021/cr500061m

    3. [3]

      Bai Y, Mora-Sero I, De Angelis F, Bisquert J, Wang P. Titanium Dioxide Nanomaterials for Photovoltaic Applications[J]. Chem. Rev., 2014,114(19):10095-10130. doi: 10.1021/cr400606n

    4. [4]

      Wang Q Y, Li H L, Yu X L, Jia Y, Chang Y, Gao S M. Morphology Regulated Bi2WO6 Nanoparticles on TiO2 Nanotubes by Solvothermal Sb3+ Doping as Effective Photocatalysts for Wastewater Treatment[J]. Electrochim. Acta, 2020,330135167. doi: 10.1016/j.electacta.2019.135167

    5. [5]

      Wang X T, Xu H, Nan Y B, Sun X, Duan J Z, Huang Y L, Hou B R. Research Progress of TiO2 Photocathodic Protection to Metals in Marine Environment[J]. J. Oceanol. Limnol., 2020,38(10):1018-1044.

    6. [6]

      Yuan J N, Tsujikawa S. Characterization of Sol-Gel-Derived TiO2 Coatings and Their Photoeffects on Copper Substrates[J]. J. Electrochem. Soc., 1995,142(10):3444-3450. doi: 10.1149/1.2050002

    7. [7]

      ZHANG J, ZHU Y F, GUO Y, XU L, QI H Q, ZHOU J Z, DU R G, LIN C J. Influence of Electrolytes on the Photocathodic Protection Effect of TiO2 Nanotube Films for Stainless Steel[J]. Chem. J. Chinese Universities, 2013,34(10):2408-2414. doi: 10.7503/cjcu20130080

    8. [8]

      Cui S W, Yin X Y, Yu Q L, Liu Y P, Wang D A, Zhou F. Polypyrrole Nanowire/TiO2 Nanotube Nanocomposites as Photoanodes for Photocathodic Protection of Ti Substrate and 304 Stainless Steel under Visible Light[J]. Corros. Sci., 2015,98:471-477. doi: 10.1016/j.corsci.2015.05.059

    9. [9]

      Jin P, Guan Z C, Wang H P, Wang X, Liu G K, Du R G. Bi2S3/rGO Co-modified TiO2 Nanotube Photoanode for Enhanced Photoelectrochemical Cathodic Protection of Stainless Steel[J]. J. Photochem. Photobiol. A, 2021,407113060. doi: 10.1016/j.jphotochem.2020.113060

    10. [10]

      Feng C, Chen Z Y, Jing J P, Sun M M, Lu G Y, Tian J, Hou J. A Novel TiO2 Nanotube Arrays/MgTixOy Multiphase-Heterojunction Film with High Efficiency for Photoelectrochemical Cathodic Protection[J]. Corros. Sci., 2020,166108441. doi: 10.1016/j.corsci.2020.108441

    11. [11]

      JIN P, GUAN Z C, LIANG Y, TAN K, WANG X, SONG G L, DU R G. Photocathodic Protection on Stainless Steel by Heterostructured NiO/TiO2 Nanotube Array Film with Charge Storage Capability[J]. Acta Phys.‑Chim. Sin., 2021,37(3)1906033.  

    12. [12]

      Shao J, Wang X T, Xu H, Zhao X D, Niu J M, Zhang Z D, Huang Y L, Duan J Z. Photoelectrochemical Performance of SnS2 Sensitized TiO2 Nanotube for Protection of 304 Stainless Steel[J]. J. Electrochem. Soc., 2021,168(1)016511. doi: 10.1149/1945-7111/abdc77

    13. [13]

      Cui X Q, Li H, Yang Z Y, Li Y H, Zhang P F, Zheng Z M, Wang Y Q, Li J R, Zhang X P. A Novel CaIn2S4/TiO2 NTAs Heterojunction Photoanode for Highly Efficient Photocathodic Protection Performance of 316 SS under Visible Light[J]. Nanotechnology, 2021,32(39)395702. doi: 10.1088/1361-6528/ac0b1a

    14. [14]

      Guo S Y, Chi L F, Zhao T J, Nan Y B, Sun X, Huang Y L, Hou B R, Wang X T. Construction of MOF/TiO2 Nanocomposites with Efficient Visible-Light-Driven Photocathodic Protection[J]. J. Electroanal. Chem., 2021,880114915. doi: 10.1016/j.jelechem.2020.114915

    15. [15]

      Jia Y, Liu P B, Wang Q Y, Wu Y, Cao D D, Qiao Q A. Construction of Bi2S3-BiOBr Nanosheets on TiO2 NTA as the Effective Photocatalysts: Pollutant Removal, Photoelectric Conversion and Hydrogen Generation[J]. J. Colloid Interface Sci., 2021,585:459-469. doi: 10.1016/j.jcis.2020.10.027

    16. [16]

      Arifin K, Yunus R M, Minggu L J, Kassim M B. Improvement of TiO2 Nanotubes for Photoelectrochemical Water Splitting: Review[J]. Int. J. Hydrogen Energy, 2021,46(7):4998-5024. doi: 10.1016/j.ijhydene.2020.11.063

    17. [17]

      Li H, Song W Z, Cui X Q, Li Y H, Hou B R, Zhang X P, Wang Y Q, Cheng L J, Zhang P F, Li J R. AgInS2 and Graphene Co-sensitized TiO2 Photoanodes for Photocathodic Protection of Q235 Carbon Steel under Visible Light[J]. Nanotechnology, 2020,31(30)305704. doi: 10.1088/1361-6528/ab85eb

    18. [18]

      WANG L, SHI H, ZHANG H, CHEN Q X, JIN B D, ZHANG H Z. ZnIn2S4/TiO2/Ag Composite Photocatalyst: Preparation and Performance for Hydrogen Production from Water Splitting[J]. Chinese J. Inorg. Chem., 2021,37(9):1571-1578.  

    19. [19]

      Li Y J, Ding L, Liang Z Q, Xue Y J, Cui H Z, Tian J. Synergetic Effect of Defects Rich MoS2 and Ti3C2 MXene as Cocatalysts for Enhanced Photocatalytic H2 Production Activity of TiO2[J]. Chem. Eng. J., 2020,383123178. doi: 10.1016/j.cej.2019.123178

    20. [20]

      Li H, So ng, W Z, Cui X Q, Li Y H, Hou B R, Cheng L J, Zhang P F. Preparation of SnIn4S8/TiO2 Nanotube Photoanode and Its Photocathodic Protection for Q235 Carbon Steel Under Visible Light[J]. Nanoscale Res. Lett., 2021,16(1)10. doi: 10.1186/s11671-020-03447-1

    21. [21]

      Shen Q Q, Gao G X, Xue J B, Li Y, Li Q, Zhao Q, Liu X G, Jia H S. Photoelectrocatalytic Hydrogen Production of Heterogeneous Photoelectrodes with Different System Configurations of CdSe Nanoparticles, Au Nanocrystals and TiO2 Nanotube Arrays[J]. Int. J. Hydrogen Energy, 2020,45(51):26688-26700. doi: 10.1016/j.ijhydene.2020.07.015

    22. [22]

      Wang W C, Li F, Zhang D Q, Leung D Y C, Li G S. Photoelectrocatalytic Hydrogen Generation and Simultaneous Degradation of Organic Pollutant via CdSe/TiO2 Nanotube Arrays[J]. Appl. Surf. Sci., 2016,362:490-497. doi: 10.1016/j.apsusc.2015.11.228

    23. [23]

      Chong B H, Zhu W, Hou X H. Epitaxial Hetero-Structure of CdSe/TiO2 Nanotube Arrays with PEDOT as a Hole Transfer Layer for Photoelectrochemical Hydrogen Evolution[J]. J. Mater. Chem. A, 2017,5(13):6233-6244. doi: 10.1039/C6TA10202F

    24. [24]

      Xue J B, Shen Q Q, Yang F, Liang W, Liu X G. Investigation on the Influence of pH on Structure and Photoelectrochemical Properties of CdSe Electrolytically Deposited into TiO2 Nanotube Arrays[J]. J. Alloys Compd., 2014,607:163-168. doi: 10.1016/j.jallcom.2014.04.041

    25. [25]

      Ayal A K, Zainal Z, Lim H N, Talib Z A, Lim Y C, Chang S K, Holi A M. Fabrication of CdSe Nanoparticles Sensitized TiO2 Nanotube Arrays via Pulse Electrodeposition for Photoelectrochemical Application[J]. Mater. Res. Bull., 2018,106:257-262. doi: 10.1016/j.materresbull.2018.05.040

    26. [26]

      Shen Y C, Lu Z H, Wei Y. Modification of TiO2 Microporous Electrode with Chemical Bath Deposited Quantum-Size CdSe Particles[J]. Chem. J. Chinese Universities, 1995,16(11):50-55.

    27. [27]

      Akimoto M, Shen Q, Hayase S, Toyoda T. Photoacoustic Spectroscopy of TiO2 Nanotube Electrode Adsorbed with CdSe Quantum Dots and Its Photovoltaic Properties[J]. Jpn. J. Appl. Phys., 2014,53(7S)07KB08. doi: 10.7567/JJAP.53.07KB08

    28. [28]

      Li Z, Yu L B, Liu Y B, Sun S Q. CdS/CdSe Quantum Dots Co-sensitized TiO2 Nanowire/Nanotube Solar Cells with Enhanced Efficiency[J]. Electrochim. Acta, 2014,129:379-388. doi: 10.1016/j.electacta.2014.02.145

    29. [29]

      Shin K, Seok S I, Im S H, Park J H. CdS or CdSe Decorated TiO2 Nanotube Arrays from Spray Pyrolysis Deposition: Use in Photoelectrochemical Cells[J]. Chem. Commun., 2010,46(14)2385. doi: 10.1039/b923022j

    30. [30]

      Ayal A K, Zainal Z, Lim H N, Talib Z A, Lim Y C, Chang S K, Samsudin N A, Holi A M, Amin W N M. Electrochemical Deposition of CdSe-Sensitized TiO2 Nanotube Arrays with Enhanced Photoelectrochemical Performance for Solar Cell Application[J]. J. Mater. Sci.: Mater. Electron., 2016,27(5):5204-5210. doi: 10.1007/s10854-016-4414-8

    31. [31]

      Pawar S A, Patil D S, Jung H R, Park J Y, Mali S S, Hong C K, Shin J C, Patil P S, Kim J H. Quantum Dot Sensitized Solar Cell Based on TiO2/CdS/CdSe/ZnS Heterostructure[J]. Electrochim. Acta, 2016,203:74-83. doi: 10.1016/j.electacta.2016.04.029

    32. [32]

      Ayal A K, Zainal Z, Lim H N, Talib Z A, Lim Y C, Chang S K, Holi A M. Photocurrent Enhancement of Heat Treated CdSe-Sensitized Titania Nanotube Photoelectrode[J]. Opt. Quantum. Electron., 2017,49(4)164. doi: 10.1007/s11082-017-0985-8

    33. [33]

      Qiao J L, Wang Q Y, Ye J X, Xiao Y K. Enhancing Photoelectrochemical Performance of TiO2 Nanotube Arrays by CdS and Bi2S3 Co-Sensitization[J]. J. Photochem. Photobiol. A, 2016,319:34-39.

    34. [34]

      Hu J, Guan Z C, Liang Y, Zhou J Z, Liu Q, Wang H P, Zhang H, Du R G. Bi2S3 Modified Single Crystalline Rutile TiO2 Nanorod Array Films for Photoelectrochemical Cathodic Protection[J]. Corros. Sci., 2017,125:59-67. doi: 10.1016/j.corsci.2017.06.003

    35. [35]

      Wan Y L, Han M M, Yu L M, Jia J H, Yi G W. Fabrication and Photoelectrochemical Properties of TiO2/CuInS2/Bi2S3 Core/Shell/Shell Nanorods Electrodes[J]. RSC Adv., 2015,5(96):78902-78909. doi: 10.1039/C5RA14548A

    36. [36]

      Guo R N, Zhu G X, Gao Y J, Li B, Gou J F, Cheng X W. Synthesis of 3D Bi2S3/TiO2 NTAs Photocatalytic System and Its High Visible Light Driven Photocatalytic Performance for Organic Compound Degradation[J]. Sep. Purif. Technol., 2019,226:315-322. doi: 10.1016/j.seppur.2019.05.067

    37. [37]

      Mazierski P, Nadolna J, Nowaczyk G, Lisowski W, Winiarski M J, Klimczuk T, Kobylański M P, Jurga S, Zaleska-Medynska A. Highly Visible-Light-Photoactive Heterojunction Based on TiO2 Nanotubes Decorated by Pt Nanoparticles and Bi2S3 Quantum Dots[J]. J. Phys. Chem. C, 2017,121(32):17215-17225. doi: 10.1021/acs.jpcc.7b03895

    38. [38]

      Chen C H, Shieh J, Liao H Y, Shyue J J. Construction of Titania-Ceria Nanostructured Composites with Tailored Heterojunction for Photocurrent Enhancement[J]. J. Eur. Ceram. Soc., 2014,34(6):1523-1535. doi: 10.1016/j.jeurceramsoc.2013.12.019

    39. [39]

      Hu J, Liu Q, Zhang H, Chen C D, Liang Y, Du R G, Lin C J. Facile Ultrasonic Deposition of SnO2 Nanoparticles on TiO2 Nanotube Films for Enhanced Photoelectrochemical Performances[J]. J. Mater. Chem. A, 2015,3(45):22605-22613. doi: 10.1039/C5TA06752A

    40. [40]

      Lv J, Su L L, Wang H G, Liu L J, Xu G Q, Wang D M, Zheng Z X, Wu Y C. Enhanced Visible Light Photocatalytic Activity of TiO2 Nanotube Arrays Modified with CdSe Nanoparticles by Electrodeposition Method[J]. Surf. Coat. Technol., 2014,242:20-28. doi: 10.1016/j.surfcoat.2014.01.006

    41. [41]

      Haldar K K, Sinha G, Lahtinen J, Patra A. Hybrid Colloidal Au-CdSe Pentapod Heterostructures Synthesis and Their Photocatalytic Properties[J]. ACS Appl. Mater. Interfaces, 2012,4(11):6266-6272. doi: 10.1021/am301859b

    42. [42]

      Cao J, Xu B Y, Lin H L, Luo B D, Chen S F. Novel Heterostructured Bi2S3/BiOI Photocatalyst: Facile Preparation, Characterization and Visible Light Photocatalytic Performance[J]. Dalton Trans., 2012,41(37):11482-11490. doi: 10.1039/c2dt30883e

    43. [43]

      Lei Y, Zhang L D, Meng G W, Li G H, Zhang X Y, Liang C H, Chen W, Wang S X. Preparation and Photoluminescence of Highly Ordered TiO2 Nanowire Arrays[J]. Appl. Phys. Lett., 2001,78(8):1125-1127. doi: 10.1063/1.1350959

    44. [44]

      Li D, Haneda H, Labhsetwar N K, Hishita S, Ohashi N. Visible-Light-Driven Photocatalysis on Fluorine-Doped TiO2 Powders by the Creation of Surface Oxygen Vacancies[J]. Chem. Phys. Lett., 2005,401(4/5/6):579-584.

    45. [45]

      Park S M, Yoo J S. Electrochemical Impedance Spectroscopy for Better Electrochemical Measurements[J]. Anal. Chem., 2003,75(21):455A-461A. doi: 10.1021/ac0313973

    46. [46]

      GUO Y, JIN P, SHAO M H, DONG S G, DU R G, LIN C J. Effect of an Environment-Friendly Diisooctyl Sebacate-Based Mixed Corrosion Inhibitor on Reinforcing Steel[J]. Acta Phys.‑Chim. Sin., 2022,38(4)2003033.  

    47. [47]

      Qu D Y, Wang G W, Kafle J, Harris J, Crain L, Jin Z H, Zheng D. Electrochemical Impedance and Its Applications in Energy-Storage Systems[J]. Small Methods, 2018,2(8)1700342. doi: 10.1002/smtd.201700342

    48. [48]

      Wang H P, Guan Z C, Shi H Y, Wang X, Jin P, Song G L, Du R G. Ag/SnO2/TiO2 Nanotube Composite Film Used in Photocathodic Protection for Stainless Steel[J]. J. Photochem. Photobiol. A, 2021,4171133353.

    49. [49]

      Wang X P, Shao M H, Ye C Q, Dong S G, Du R G, Lin C J. Study on Effect of Chloride Ions on Corrosion Behavior of Reinforcing Steel in Simulated Polluted Concrete Pore Solutions by Scanning Micro-Reference Electrode Technique[J]. J. Electroanal. Chem., 2021,895115454. doi: 10.1016/j.jelechem.2021.115454

    50. [50]

      Robel I, Subramanian V, Kuno M, Kamat P V. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films[J]. J. Am. Chem. Soc., 2006,128(7):2385-2393. doi: 10.1021/ja056494n

    51. [51]

      Cheng L Y, Ding H M, Chen C H, Wang N N. Ag2 S/Bi2S3 Co-sensitized TiO2 Nanorod Arrays Prepared on Conductive Glass as a Photoanode for Solar Cells[J]. J. Mater. Sci.: Mater. Electron., 2016,27(4):3234-3239. doi: 10.1007/s10854-015-4149-y

    52. [52]

      Wang Q Y, Liu Z Y, Jin R C, Wang Y, Gao S M. SILAR Preparation of Bi2S3 Nanoparticles Sensitized TiO2 Nanotube Arrays for Efficient Solar Cells and Photocatalysts[J]. Sep. Purif. Technol., 2019,210:798-803. doi: 10.1016/j.seppur.2018.08.050

    53. [53]

      Li Z X, Xie Y L, Xu H, Wang T M, Xu Z G, Zhang H L.. Expanding the Photoresponse Range of TiO2 Nanotube Arrays by CdS/CdSe/ZnS Quantum Dots Co-modification.[J]. J. Photochem. Photobiol. A, 2011,224(1):25-30. doi: 10.1016/j.jphotochem.2011.09.002

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    5. [5]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    6. [6]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    7. [7]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    8. [8]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    9. [9]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    10. [10]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    11. [11]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    12. [12]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    13. [13]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    14. [14]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    15. [15]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    16. [16]

      Yuchen Guo Xiangyu Zou Xueling Wei Weiwei Bao Junjun Zhang Jie Han Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206

    17. [17]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    20. [20]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

Metrics
  • PDF Downloads(2)
  • Abstract views(758)
  • HTML views(183)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return