Citation: Xiu-Juan JIANG, Zhi-Yin XIAO, Li LONG, Li-Mei CHEN, Li-Qiu ZHANG, Xiao-Ming LIU. Interactions of a Water-Soluble Diiron Hexacarbonyl Complex with Biologically Relevant Molecules and Their Promotion in CO-Release[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(5): 913-920. doi: 10.11862/CJIC.2022.083 shu

Interactions of a Water-Soluble Diiron Hexacarbonyl Complex with Biologically Relevant Molecules and Their Promotion in CO-Release

Figures(9)

  • In this study, a water-soluble diiron carbonyl complex, [Fe2(μ-SCH2R)2(CO)6] (R=CH(OH)CH2(OH), 1), which has the potential as a CO-releasing molecule (CORM), was used to spectroscopically investigate its interaction with some biological molecules, such as hemoglobin (Hb), myoglobin (Mb), bovine serum albumin (BSA), glutathione (GSH), and DNA. The IR spectroscopic results showed that the proteins and GSH could promote the decomposition of complex 1 to release CO. All the CO-release progress followed the first-order kinetic model and GSH possessed the highest efficiency in promoting CO-release. UV absorption spectral variations and fluorescent quench effect also indicated the interactions between these biologically relevant molecules and the diiron carbonyl complex. CD spectra of the mixture of the proteins and complex 1 indicated that no conformational changes in the proteins are induced. The interactions between pUC19 plasmid DNA and complex 1 suggested that the complex could not cause DNA damage.
  • 加载中
    1. [1]

      Babu D, Motterlini R, Lefebvre R A. CO and CO-Releasing Molecules (CO-RMs) in Acute Gastrointestinal Inflammation[J]. Brit. J. Pharmacol, 2015,172(6):1557-1573. doi: 10.1111/bph.12632

    2. [2]

      Adach W, Błaszczyk M, Olas B. Carbon Monoxide and Its Donors-Chemical and Biological Properties[J]. Chem. Biol. Interact., 2020,318108973. doi: 10.1016/j.cbi.2020.108973

    3. [3]

      Mann B E. Signaling Molecule Delivery (CO)//Reedijk J, Poeppelmeier K. Comprehensive Inorganic Chemistry Ⅱ. 2nd ed. Amsterdam: Elsevier, 2013: 857-876

    4. [4]

      Kourti M, Jiang W G, Cai J. Aspects of Carbon Monoxide in Form of CO-Releasing Molecules Used in Cancer Treatment: More Light on the Way[J]. Oxid. Med. Cell. Longev., 2017,20179326454.

    5. [5]

      Motterlini R, Clark J E, Foresti R, Sarathchandra P, Mann B E, Green C J. Carbon Monoxide-Releasing Molecules-Characterization of Biochemical and Vascular Activities[J]. Circ. Res., 2002,90(2):E17-E24.

    6. [6]

      Mann B E, Motterlini R. CO and NO in Medicine[J]. Chem. Commun., 2007(41):4197-4208. doi: 10.1039/b704873d

    7. [7]

      Mann B E. Carbon Monoxide: An Essential Signaling Molecule[J]. Top. Organomet. Chem., 2010,32:247-285.

    8. [8]

      Ford P C. Metal Complex Strategies for Photo-Uncaging the Small Molecule Bioregulators Nitric Oxide and Carbon Monoxide[J]. Coord. Chem. Rev., 2018,376:548-564. doi: 10.1016/j.ccr.2018.07.018

    9. [9]

      Ismailova A, Kuter D, Bohle D S, Butler I S. An Overview of the Potential Therapeutic Applications of CO-Releasing Molecules[J]. Bioinorg. Chem. Appl., 20188547364.

    10. [10]

      Lazarus L S, Benninghoff A D, Berreau L M. Development of Triggerable, Trackable, and Targetable Carbon Monoxide Releasing Molecules[J]. Acc. Chem. Res., 2020,53(10):2273-2285. doi: 10.1021/acs.accounts.0c00402

    11. [11]

      Alberto R, Motterlini R. Chemistry and Biological Activities of CO-Releasing Molecules (CORMs) and Transition Metal Complexes[J]. Dalton Trans., 2007(17):1651-1660. doi: 10.1039/b701992k

    12. [12]

      Fairlamb I J S, Duhme-Klair A K, Lynam J M, Moulton B E, O'Brien C T, Sawle P, Hammad J, Motterlini R. η4-Pyrone Iron(0)carbonyl Complexes as Effective CO-Releasing Molecules (CO-RMs)[J]. Biorg. Med. Chem. Lett., 2006,16(4):995-998. doi: 10.1016/j.bmcl.2005.10.085

    13. [13]

      Scapens D, Adams H, Johnson T R, Mann B E, Sawle P, Aqil R, Perrior T, Motterlini R. [(η-C5H4R)Fe(CO)2X], X=Cl, Br, I, NO3, CO2Me and[(η-C5H4R)Fe(CO)3]+, R= (CH2)nCO2Me (n=0-2), and CO2CH2CH2OH: A New Group of CO-Releasing Molecules[J]. Dalton Trans., 2007(43):4962-4973. doi: 10.1039/b704832g

    14. [14]

      Kretschmer R, Gessner G, Görls H, Heinemann S H, Westerhausen M. Dicarbonyl-Bis(cysteamine)iron(Ⅱ) : A Light Induced Carbon Monoxide Releasing Molecule Based on Iron (CORM-S1)[J]. J. Inorg. Biochem., 2011,105(1):6-9. doi: 10.1016/j.jinorgbio.2010.10.006

    15. [15]

      Romanski S, Kraus B, Guttentag M, Schlundt W, Rucker H, Adler A, Neudorfl J M, Alberto R, Amslinger S, Schmalz H G. Acyloxybutadiene Tricarbonyl Iron Complexes as Enzyme-Triggered CO-Releasing Molecules (ET-CORMs): A Structure-Activity Relationship Study[J]. Dalton Trans., 2012,41(45):13862-13875. doi: 10.1039/c2dt30662j

    16. [16]

      Romanski S, Rücker H, Stamellou E, Guttentag M, Neudörfl J M, Alberto R, Amslinger S, Yard B, Schmalz H G. Iron Dienylphosphate Tricarbonyl Complexes as Water-Soluble Enzyme-Triggered CO-Releasing Molecules (ET-CORMs)[J]. Organometallics, 2012,31(16):5800-5809. doi: 10.1021/om300359a

    17. [17]

      Botov S, Stamellou E, Romanski S, Guttentag M, Alberto R, Neudoerfl J M, Yard B, Schmalz H G. Synthesis and Performance of Acyloxy-diene-Fe(CO)3 Complexes with Variable Chain Lengths as Enzyme-Triggered Carbon Monoxide-Releasing Molecules[J]. Organometallics, 2013,32(13):3587-3594. doi: 10.1021/om301233h

    18. [18]

      Jiang X J, Xiao Z Y, Zhong W, Liu X M. Brief Survey of Diiron and Monoiron Carbonyl Complexes and Their Potentials as CO-Releasing Molecules (CORMs)[J]. Coord. Chem. Rev., 2021,429213634. doi: 10.1016/j.ccr.2020.213634

    19. [19]

      Liu X M, Ibrahim S K, Tard C, Pickett C J. Iron-Only Hydrogenase: Synthetic, Structural and Reactivity Studies of Model Compounds[J]. Coord. Chem. Rev., 2005,249(15/16):1641-1652.

    20. [20]

      Tard C, Liu X M, Ibrahim S K, Bruschi M, De Gioia L, Davies S C, Yang X, Wang L S, Sawers G, Pickett C J. Synthesis of the H-Cluster Framework of Iron-Only Hydrogenase[J]. Nature, 2005,433(7026):610-613. doi: 10.1038/nature03298

    21. [21]

      Tard C, Pickett C J. Structural and Functional Analogues of the Active Sites of the[Fe]-, [NiFe]-, and[FeFe]-Hydrogenases[J]. Chem. Rev., 2009,109(6):2245-2274. doi: 10.1021/cr800542q

    22. [22]

      Li Y L, Rauchfuss T B. Synthesis of Diiron(Ⅰ) Dithiolato Carbonyl Complexes[J]. Chem. Rev., 2016,116(12):7043-7077. doi: 10.1021/acs.chemrev.5b00669

    23. [23]

      Long L, Jiang X J, Wang X, Xiao Z Y, Liu X M. Water-Soluble Diiron Hexacarbonyl Complex as a CO-RM: Controllable CO-Releasing, Releasing Mechanism and Biocompatibility[J]. Dalton Trans., 2013,42:15663-15669. doi: 10.1039/c3dt51281a

    24. [24]

      Jiang X J, Long L, Wang H L, Chen L M, Liu X M. Diiron Hexacarbonyl Complexes as Potential CO-RMs: CO-Releasing Initiated by a Substitution Reaction with Cysteamine and Structural Correlation to the Bridging Linkage[J]. Dalton Trans., 2014,43(26):9968-9975. doi: 10.1039/C3DT53620C

    25. [25]

      Chen L M, Jiang X J, Wang X, Long L, Zhang J Y, Liu X M. A Kinetic Analysis of CO Release from a Diiron Hexacarbonyl Complex Promoted by Amino Acids[J]. New J. Chem., 2014,38(12):5957-5963. doi: 10.1039/C4NJ00661E

    26. [26]

      Gao C J, Liang X H, Guo Z X, Jiang B P, Liu X M, Shen X C. Diiron Hexacarbonyl Complex Induces Site-Specific Release of Carbon Monoxide in Cancer Cells Triggered by Endogenous Glutathione[J]. ACS Omega, 2018,3(3):2683-2689. doi: 10.1021/acsomega.8b00052

  • 加载中
    1. [1]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    4. [4]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    5. [5]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    8. [8]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    11. [11]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    12. [12]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    13. [13]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    14. [14]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    15. [15]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

Metrics
  • PDF Downloads(11)
  • Abstract views(538)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return