Citation: Ying LUO, Zhao-Bo DING, Wen LIU, Li-Qin YAN, Fan-Qi MIN, Jing-Ying XIE, Jie LU. Preparation and Properties of Micron Single Crystal High-Voltage LiNi0.5Mn1.5O4 Material[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 611-619. doi: 10.11862/CJIC.2022.081 shu

Preparation and Properties of Micron Single Crystal High-Voltage LiNi0.5Mn1.5O4 Material

  • Corresponding author: Jing-Ying XIE, jyxie@hit.edu.cn
  • Received Date: 10 October 2021
    Revised Date: 7 March 2022

Figures(8)

  • High-voltage LiNi0.5Mn1.5O4 materials with controllable morphology were prepared by an improved coprecipitation - high - temperature solid - phase method. A low - temperature and high - pressure reaction environment was designed based on the characteristics that lithium salt - containing crystal water was easy to dehydrate. The prereaction process introduced before high-temperature calcination, can effectively improve the mixing uniformity and reactivity of lithium salt and oxide precursor, inhibiting the formation of impurity phase and reducing the mixing degree of metal ions. By adjusting the pre-reaction temperature, the morphology and particle size of LiNi0.5Mn1.5O4 materials were controllable. The results showed that the samples synthesized by the pre - reaction temperature of 180 ℃ had a regular octahedral single crystal morphology and relatively uniform size distribution, which effectively inhibit the electrode/electrolyte interface reaction so that the synthesized materials showed excellent cycle stability and rate performance. Its capacity retention rate reached 95.3% after 400 cycles at 1C and room temperature, and the specific capacity of 120.9 mAh·g-1 could still be released at 20C.
  • 加载中
    1. [1]

      Li J W, Liu Y, Yao W L, Rao X F, Zhong S W, Qian L W. Li2TiO3 and Li2ZrO3 Co - modification LiNi0.8Co0.1Mn0.1O2 Cathode Material with Improved High-Voltage Cycling Performance for Lithium-Ion Batteries[J]. Solid State Ionics, 2020,349115292. doi: 10.1016/j.ssi.2020.115292

    2. [2]

      Li J W, Yao W L, Zhang F C, Rao X F, Zhang Q, Zhong S W, Cheng H W, Yan Z Q. Porous SnO2 Microsphere and Its Carbon Nanotube Hybrids: Controllable Preparation, Structures and Electrochemical Performances as Anode Materials[J]. Electrochim. Acta, 2021,388138582. doi: 10.1016/j.electacta.2021.138582

    3. [3]

      Yao W L, Liu Y, Zhang Q, Zhong S W, Cheng H W, Yan Z Q. Synergistically Enhanced Electrochemical Performance of Ni-Rich Cathode Materials for Lithium - Ion Batteries by K and Ti Comodification[J]. J. Phys. Chem. C, 2020,124:2346-2356. doi: 10.1021/acs.jpcc.9b10526

    4. [4]

      Xu H T, Zhang H R, Ma J, Xu G J, Dong T T, Chen J C, Cui G L. Overcoming the Challenges of 5 V Spinel LiNi0.5Mn1.5O4 Cathodes with Solid Polymer Electrolytes[J]. ACS Energy Lett., 2019,4(12):2871-2886. doi: 10.1021/acsenergylett.9b01871

    5. [5]

      Sandaruwan R D L, Cong L, Ma L P, Ma S C, Wang H Y. Tackling the Interfacial Issues of Spinel LiNi0.5Mn1.5O4 by Room - Temperature Spontaneous Dediazonation Reaction[J]. ACS Appl. Mater. Interfaces, 2021,13(11):13264-13272. doi: 10.1021/acsami.1c00204

    6. [6]

      Masias A, Marcicki J, Paxton W A. Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications[J]. ACS Energy Lett., 2021,6(2):621-630. doi: 10.1021/acsenergylett.0c02584

    7. [7]

      Ma J, Hu P, Cui G L, Chen L Q. Surface and Interface Issues in Spinel LiNi0.5Mn1.5O4: Insights into a Potential Cathode Material for High Energy Density Lithium Ion Batteries[J]. Chem. Mater., 2016,28(11):3578-3606. doi: 10.1021/acs.chemmater.6b00948

    8. [8]

      Zou Z Y, Xu H T, Zhang H R, Tang Y, Cui G L. Electrolyte Therapy for Improving the Performance of LiNi0.5Mn1.5O4 Cathodes Assembled Lithium-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2020,12(19):21368-21385. doi: 10.1021/acsami.0c02516

    9. [9]

      Luo Y, Zhang Y X, Yan L Q, Xie J Y, Lv T L. Octahedral and Porous Spherical Ordered LiNi0.5Mn1.5O4 Spinel: The Role of Morphology on Phase Transition Behavior and Electrode/electrolyte Interfacial Properties[J]. ACS Appl. Mater. Interfaces, 2018,10(37):31795-31803. doi: 10.1021/acsami.8b11187

    10. [10]

      Liang G, Peterson V K, See K W, Guo Z P, Pang W K. Developing High-Voltage Spinel LiNi0.5Mn1.5O4 Cathodes for High-Energy-Density Lithium-Ion Batteries: Current Achievements and Future Prospects[J]. J. Mater. Chem. A, 2020,8(31):15373-15398. doi: 10.1039/D0TA02812F

    11. [11]

      Yang Y, Wang Y, Xue Z M, Zhang L H, Yan L Q, Luo Y, Xie J Y. Meticulous Guard: The Role of Al/F Doping in Improving the Electrochemical Performance of High - Voltage Spinel Cathode[J]. J. Materiomics, 2021,7:585-592. doi: 10.1016/j.jmat.2020.11.006

    12. [12]

      Yi T F, Mei J, Zhu Y R. Key Strategies for Enhancing the Cycling Stability and Rate Capacity of LiNi0.5Mn1.5O4 as High-Voltage Cathode Materials for High Power Lithium-Ion Batteries[J]. J. Power Sources, 2016,316:85-105. doi: 10.1016/j.jpowsour.2016.03.070

    13. [13]

      Luo Y, Lu T L, Zhang Y X, Yan L Q, Mao S S, Xie J Y. Surface - Segregated, High-Voltage Spinel Lithium-Ion Battery Cathode Material LiNi0.5 Mn1.5O4 Cathodes by Aluminium Doping with Improved High-Rate Cyclability[J]. J. Alloys Compd., 2017,703:289-297. doi: 10.1016/j.jallcom.2017.01.248

    14. [14]

      Kunduraci M, Amatucci G G. The Effect of Particle Size and Morphology on the Rate Capability of 4.7 V LiMn1.5+δNi0.5-δO4 Spinel Lithium-Ion Battery Cathodes[J]. Electrochim. Acta, 2008,53(12):4193-4199. doi: 10.1016/j.electacta.2007.12.057

    15. [15]

      Shu Y, Xie Y, Yan W C, Meng S, Sun D Y, Jin Y C, He K. Synergistic Effect of Surface Plane and Particle Sizes on the Electrochemical Performance of LiNi0.5 Mn1.5O4 Cathode Material via a Facile Calcination Process[J]. J. Power Sources, 2019,433226708. doi: 10.1016/j.jpowsour.2019.226708

    16. [16]

      Xue Y, Wang Z B, Zheng L L, Yu F D, Liu B S, Zhang Y, Zhou Y X. Synthesis and Performance of Hollow LiNi0.5Mn1.5O4 with Different Particle Sizes for Lithium - Ion Batteries[J]. RSC Adv., 2015,5(122):100730-100735. doi: 10.1039/C5RA17933E

    17. [17]

      Chi L H, Dinh N N, Brutti S, Scrosati B. Synthesis, Characterization and Electrochemical Properties of 4.8 V LiNi0.5Mn1.5O4 Cathode Material in Lithium - Ion Batteries[J]. Electrochim. Acta, 2010,55(18):5110-5116. doi: 10.1016/j.electacta.2010.04.003

    18. [18]

      Lee J H, Kim K J. Structural and Electrochemical Evolution with Post-Annealing Temperature of Solution-Based LiNi0.5Mn1.5O4 Thin- Film Cathodes for Microbatteries with Cyclic Stability[J]. Electrochim. Acta, 2014,137:169-174. doi: 10.1016/j.electacta.2014.05.161

    19. [19]

      Kozawa T, Kondo A, Nakamura E, Abe H, Naito M, Koga H, Nakanishi S, Iba H. Rapid Synthesis of LiNi0.5Mn1.5O4 by Mechanical Process and Post-Annealing[J]. Mater. Lett., 2014,132:218-220. doi: 10.1016/j.matlet.2014.06.097

    20. [20]

      Li X T, Shao Z C, Zhang Y, Zhang W, Shao H M. A Facile Polymeric Gel Route Synthesis of High-Voltage LiNi0.5Mn1.5O4 Cathode Material for Lithium-Ion Batteries[J]. Mater. Lett., 2020,277128310. doi: 10.1016/j.matlet.2020.128310

    21. [21]

      Wang S J, Li P, Shao L Y, Wu K Q, Lin X T, Shui M, Long N B, Wang D J, Shu J. Preparation of Spinel LiNi0.5Mn1.5 O4 and Cr-Doped LiNi0.5Mn1.5O4 Cathode Materials by Tartaric Acid Assisted Sol-Gel Method[J]. Ceram. Int., 2015,41(1):1347-1353. doi: 10.1016/j.ceramint.2014.09.067

    22. [22]

      Liang W B, Wang P, Ding H, Wang B, Li S Y. Granularity Control Enables High Stability and Elevated - Temperature Properties of Micron - sized Single - Crystal LiNi0.5Mn1.5O4 Cathodes at High Voltage[J]. J. Materiomics, 2021,7(5):1049-1060. doi: 10.1016/j.jmat.2021.02.003

    23. [23]

      Shen Y D, Ju X K, Zhang J Z, Xie T Z, Zong F Y, Xue D Y, Lin X P, Zhang J M, Li Q H. A Convenient Co - precipitation Method to Prepare High Performance LiNi0.5Mn1.5O4 Cathode for Lithium Ion Batteries[J]. Mater. Chem. Phys., 2020,240122137. doi: 10.1016/j.matchemphys.2019.122137

    24. [24]

      Ren X L, Wang Y R, Xiao Q Z, Lei G T, Li Z H. Excellent Electrochemical Performances of High - Voltage LiNi0.5Mn1.5O4 Hollow Microspheres Synthesized by a Static Co - precipitation Method[J]. Mater. Lett., 2019,248:97-100. doi: 10.1016/j.matlet.2019.03.107

    25. [25]

      Feng J J, Huang Z P, Guo C, Chernova N A, Upreti S, Whittingham M S. An Organic Coprecipitation Route to Synthesize High Voltage LiNi0.5Mn1.5O4[J]. ACS Appl. Mater. Interfaces, 2013,5(20):10227-10232. doi: 10.1021/am4029526

    26. [26]

      Lin H B, Zhang Y M, Rong H B, Mai S W, Hu J N, Liao Y H, Xing L D, Xu M Q, Li X P, Li W S. Crystallographic Facet - and Size - Controllable Synthesis of Spinel LiNi0.5Mn1.5O4 with Excellent Cyclic Stability as Cathode of High Voltage Lithium Ion Battery[J]. J. Mater. Chem. A, 2014,2(30):11987-11995. doi: 10.1039/C4TA01810A

    27. [27]

      Chemelewski K R, Dong W S, Wei L, Manthiram A. Octahedral and Truncated High - Voltage Spinel Cathodes: The Role of Morphology and Surface Planes in Electrochemical Properties[J]. J. Mater. Chem. A, 2013,1(10):3347-3354. doi: 10.1039/c3ta00682d

    28. [28]

      Chemelewski K R, Li W, Gutierrez A, Manthiram A. High - Voltage Spinel Cathodes for Lithium-Ion Batteries: Controlling the Growth of Preferred Crystallographic Planes through Cation Doping[J]. J. Mater. Chem. A, 2013,1(48):15334-15341. doi: 10.1039/c3ta13265j

    29. [29]

      Fang H S, Wang Z X, Li X H, Guo H J, Peng W J. Exploration of High Capacity LiNi0.5Mn1.5O4 Synthesized by Solid-State Reaction[J]. J. Power Sources, 2006,153:174-176. doi: 10.1016/j.jpowsour.2005.03.179

    30. [30]

      Alcantara R, Jaraba M, Lavela P, Tirado J L. Optimizing Preparation Conditions for 5 V Electrode Performance and Structural Changes in Lil-xNi0.5Mnl.5O4 Spinel[J]. Electrochim. Acta, 2002,47:1829-1835. doi: 10.1016/S0013-4686(02)00024-5

    31. [31]

      Lu X J, Liu C, Zhu W J, Lu Z P, Yang Y, Yang G. Synthesis of Micron - sized LiNi0.5Mn1.5O4 Single Crystals through In Situ Microemulsion/Coprecipitation and Characterization of Their Electrochemical Capabilities[J]. Powder Technol., 2018,343:445-453.

    32. [32]

      Dokko K, Mohamedi M, Anzue N, Itoh T, Uchida I. In Situ Raman Spectroscopic Studies of LiNixMn2-xO4 Thin Film Cathode Materials for Lithium Ion Secondary Batteries[J]. J. Mater. Chem., 2002,12:3688-3693. doi: 10.1039/B206764A

    33. [33]

      Yoon J, Kim D, Um J H, Jeong M, Oh W, Yoon W S. Effect of Local Structural Changes on Rate Capability of LiNi0.5Mn1.5O4-δ Cathode Material for Lithium Ion Batteries[J]. J. Alloys Compd., 2016,686:593-600. doi: 10.1016/j.jallcom.2016.06.044

    34. [34]

      Lv D P, Bai J Y, Zhang P, Wu S Q, Li Y X, Wen W, Jiang Z, Mi J X, Zhu Z Z, Yang Y. Understanding the High Capacity of Li2FeSiO4: In Situ XRD/XANES Study Combined with First - Principles Calcula- tions[J]. Chem. Mater., 2013,25:2014-2020. doi: 10.1021/cm303685p

    35. [35]

      Qin X, Gong J J, Guo J L, Zong B, Zhou M S, Wang L, Liang G C. Synthesis and Performance of LiNi0.5Mn1.5O4 Cathode Materials with Different Particle Morphologies and Sizes for Lithium-Ion Battery[J]. J. Alloys Compd., 2019,786:240-249. doi: 10.1016/j.jallcom.2019.01.307

    36. [36]

      Liu Y L, Li J, Zeng M, Huang Y J, Xun X, Meng Y, Guo J Q, Deng J N, Yang J Z. Octahedral Nano - Particles Constructed LiNi0.5Mn1.5O4 Microspheres as High Voltage Cathode Materials for Long - Life Lithium-Ion Batteries[J]. Ceram. Int., 2018,44(16):20043-20048. doi: 10.1016/j.ceramint.2018.07.278

    37. [37]

      Wei Y, Tuo K Y, Wang P, Yang L, Liang W B, Ding H, Cui X L, Li S Y. Appropriate Proportion Truncated Octahedron LiNi0.5Mn1.5O4 with Excellent Electrochemical Properties for Lithium-Ion Batteries Prepared by Graphite-Assisted Calcination Method[J]. Ionics, 2020,26:6003-6012. doi: 10.1007/s11581-020-03786-0

  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    15. [15]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

Metrics
  • PDF Downloads(2)
  • Abstract views(552)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return