Citation: Yang WU, Jia-Le LIAN, Yi-Chuan GUO, Dong-Liang CHEN, Xu WANG, Zhi-Zhen YE, Jian-Guo LÜ. 2D-Layered Ti3C2Tx-MXene@VS2 as Anodes for High-Performance Lithium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 675-684. doi: 10.11862/CJIC.2022.080 shu

2D-Layered Ti3C2Tx-MXene@VS2 as Anodes for High-Performance Lithium-Ion Batteries

  • Corresponding author: Jian-Guo LÜ, lujianguo@zju.edu.cn
  • Received Date: 12 November 2021
    Revised Date: 25 February 2022

Figures(8)

  • To explore a high-performance anode for lithium-ion batteries, 2D-layered Ti3C2Tx with high conductivity and stability was prepared by acid etching, and petal-shaped VS2 nanosheets with high theoretical specific capacity were prepared by solvothermal method. Then the 2D-layered Ti3C2Tx-MXene@VS2 hybrid was obtained by a simple liquid-phase mixing method. The morphology and structure of this hybrid were systematically characterized by scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy, X-ray diffraction, and energy-dispersive X-ray diffraction, while the electrochemical properties were studied by cyclic voltammetry, galvanostatic charge/discharge, long cycle life, and AC impedance spectroscopy. The results indicate that VS2 nanosheets are uniformly distributed between the layers and on the surface of Ti3C2Tx. The hybrid had a high reversible capacity (610.5 mAh·g-1 at 0.1 A·g-1), good rate performance (197.1 mAh·g-1 at 2 A·g-1), and good cycle stability (874.9 mAh·g-1 at 0.2 A·g-1 after 600 cycles; 115.9 mAh·g-1 at 2 A·g-1 after 1 500 cycles).
  • 加载中
    1. [1]

      Zhao Z Y, Xia K Q, Hou Y, Zhang Q H, Ye Z Z, Lu J G. Designing Flexible, Smart and Self-Sustainable Supercapacitors for Portable/Wearable Electronics: From Conductive Polymers[J]. Chem. Soc. Rev., 2021,50(22):12702-12743. doi: 10.1039/D1CS00800E

    2. [2]

      Tian Y, Lu J G, Tang H C, Wang X, Zhang L Q, Hu P, Zhou L, Wang Y, Guo Y C, Khatoon R, Zhang Q H, He Q G, He Y, Qiu M, Hou Y, Ye Z Z. An Ultra-Stable Anode Material for High/Low-Temperature Workable Super-Fast Charging Sodium-Ion Batteries[J]. Chem. Eng. J., 2021,422130054. doi: 10.1016/j.cej.2021.130054

    3. [3]

      Hu P F, Wang H, Yang Y, Yang J, Lin J, Guo L. Renewable-BiomoleculeBased Full Lithium-Ion Batteries[J]. Adv. Mater., 2016,28(18):3486-3492. doi: 10.1002/adma.201505917

    4. [4]

      Ji L W, Lin Z, Alcoutlabi M, Zhang X W. Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries[J]. Energy Environ. Sci., 2011,4(8):2682-2699. doi: 10.1039/c0ee00699h

    5. [5]

      Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J]. Chem. Mater., 2009,22(3):587-603.

    6. [6]

      Chen H W, Liu R M, Wu Y, Cao J H, Chen J, Hou Y, Guo Y C, Khatoon R, Chen L X, Zhang Q H, He Q G, Lu J G. Interface Coupling 2D/2D SnSe2/Graphene Heterostructure as Long-Cycle Anode for All-Climate Lithium-Ion Battery[J]. Chem. Eng. J., 2021,407126973. doi: 10.1016/j.cej.2020.126973

    7. [7]

      Tian Y, Wang Z Y, Fu J M, Xia K Q, Lu J G, Tang H C, Rabia K, Chen H W, Zhu Z Y, Zhang Q H, Zeng Y J, Ye Z Z. FeSe2/Carbon Nanotube Hybrid Lithium-Ion Battery for Harvesting Energy from Triboelectric Nanogenerators[J]. Chem. Commun., 2019,55(73):10960-10963. doi: 10.1039/C9CC05069H

    8. [8]

      LI X Q, CHEN X, LI H B, ZHAO T T, ZHANG Y M, XIANG J, ZHANG K Y. Carbon-Coated CaSnO3 Nanofibers as High Performance Anode Materials for Lithium Ion Batteries[J]. Chinese J. Inorg. Chem., 2021,37(4):700-708.  

    9. [9]

      Cao Z J, Zhang Y Z, Cui Y L S, Li B, Yang S B. Harnessing the Unique Features of MXenes for Sulfur Cathodes[J]. Tungsten, 2020,2(2):162-175. doi: 10.1007/s42864-020-00047-5

    10. [10]

      Zhao L, Li B. Synthesis and Recent Applications of MXenes with Mo, V or Nb Transition Metals: A Review[J]. Tungsten, 2020,2(2)176193.

    11. [11]

      Lu M, Li H J, Han W J, Chen J N, Shi W, Wang J H, Meng X M, Qi J G, Li H B, Zhang B S, Zhang W, Zheng W T. 2D Titanium Carbide (MXene) Electrodes with Lower-F Surface for High Performance Lithium-Ion Batteries[J]. J. Energy Chem., 2019,31:148-153. doi: 10.1016/j.jechem.2018.05.017

    12. [12]

      Liu H, Zhang X, Zhu Y F, Cao B, Zhu Q Z, Zhang P, Xu B, Wu F, Chen R J. Electrostatic Self-Assembly of 0D-2D SnO2 Quantum Dots/Ti3C2Tx MXene Hybrids as Anode for Lithium-Ion Batteries[J]. Nanomicro Lett., 2019,11(1)65.

    13. [13]

      Ding W, Wang S, Wu X Z, Wang Y, Li Y Y, Zhou P F, Zhou T, Zhou J, Zhuo S P. Co0.85Se@C/Ti3C2Tx MXene Hybrids as Anode Materials for Lithium-Ion Batteries[J]. J. Alloys Compd., 2020,816152566. doi: 10.1016/j.jallcom.2019.152566

    14. [14]

      Xu D, Ma K, Chen L, Hu Y J, Jiang H, Li C Z. MXene Interlayer Anchored Fe3O4 Nanocrystals for Ultrafast Li-Ion Batteries[J]. Chem. Eng. Sci., 2020,212115342. doi: 10.1016/j.ces.2019.115342

    15. [15]

      Wu X H, Wang Z Y, Yu M Z, Xiu L Y, Qiu J S. Stabilizing the MXenes by Carbon Nanoplating for Developing Hierarchical Nanohybrids with Efficient Lithium Storage and Hydrogen Evolution Capability[J]. Adv. Mater., 2017,29(24)1607017. doi: 10.1002/adma.201607017

    16. [16]

      Ru J J, He T, Chen B J, Feng Y T, Zu L H, Wang Z J, Zhang Q B, Hao T Z, Meng R J, Che R C, Zhang C, Yang J H. Covalent Assembly of MoS2 Nanosheets with SnS Nanodots as Linkages for Lithium/Sodium-Ion Batteries[J]. Angew. Chem. Int. Ed., 2020,59(34):14621-14627. doi: 10.1002/anie.202005840

    17. [17]

      Xu X X, Li L J, Chen H Q, Guo X S, Zhang Z H, Liu J, Mao C M, Li G C. Constructing Heterostructured FeS2/CuS Nanospheres as High Rate Performance Lithium Ion Battery Anodes[J]. Inorg. Chem. Front., 2020,7(9):1900-1908. doi: 10.1039/C9QI01674K

    18. [18]

      Zheng J, He C J, Li X C, Wang K, Wang T S, Zhang R T, Tang B H J, Rui Y C. CoS2-MnS@Carbon Nanoparticles Derived from MetalOrganic Framework as a Promising Anode for Lithium-Ion Batteries[J]. J. Alloys Compd., 2021,854157315. doi: 10.1016/j.jallcom.2020.157315

    19. [19]

      Wang D, Liu Y H, Meng X, Wei Y J, Zhao Y Y, Pang Q, Chen G. Two -Dimensional VS2 Monolayers as Potential Anode Materials for Lithium-Ion Batteries and Beyond: First-Principles Calculations[J]. J. Mater. Chem. A, 2017,5(40):21370-21377. doi: 10.1039/C7TA06944H

    20. [20]

      Yang W J, Luo N J, Zheng C, Huang S P, Wei M D. Hierarchical Composite of Rose-like VS2@S/N-Doped Carbon with Expanded (001) Planes for Superior Li-Ion Storage[J]. Small, 2019,15(51)1903904. doi: 10.1002/smll.201903904

    21. [21]

      Cao M L, Gao L, Lv X W, Shen Y. TiO2-B@VS2 Heterogeneous Nanowire Arrays as Superior Anodes for Lithium-Ion Batteries[J]. J. Power Sources, 2017,350:87-93. doi: 10.1016/j.jpowsour.2017.03.070

    22. [22]

      Ding Z G, Zhang Q, Chen Y H, Liu G Z, Xin X, He H, Cai B, Wu J H, Yao X Y. PEDOT-PSS Coated VS2 Nanosheet Anodes for High Rate and Ultrastable Lithium-Ion Batteries[J]. New J. Chem., 2019,43(4):1681-1687. doi: 10.1039/C8NJ05636F

    23. [23]

      Fang W Y, Zhao H B, Xie Y P, Fang J H, Xu J Q, Chen Z W. Facile Hydrothermal Synthesis of VS2/Graphene Nanocomposites with Superior High-Rate Capability as Lithium-Ion Battery Cathodes[J]. ACS Appl. Mater. Interfaces, 2015,7(23):13044-13052. doi: 10.1021/acsami.5b03124

    24. [24]

      Huang Z Y, Han X Y, Cui X, He C G, Zhang J L, Wang X G, Lin Z Q, Yang Y K. Vertically Aligned VS2 on Graphene as a 3D Heteroarchitectured Anode Material with Capacitance-Dominated Lithium Storage[J]. J. Mater. Chem. A, 2020,8(12):5882-5889. doi: 10.1039/C9TA13835H

    25. [25]

      Anasori B, Lukatskaya M R, Gogotsi Y. 2D Metal Carbides and Nitrides (MXenes) for Energy Storage[J]. Nat. Rev. Mater., 2017,2(2)16098. doi: 10.1038/natrevmats.2016.98

    26. [26]

      GONG J J, WANG J M. Photodeposition for Preparing Porous Si@CoOx Composites as High-Performance Anode Material for Lithium-Ion Batteries[J]. Chinese J. Inorg. Chem., 2021,37(10):1773-1781. doi: 10.11862/CJIC.2021.199 

    27. [27]

      Feng J, Sun X, Wu C Z, Peng L L, Lin C W, Hu S L, Yang J L, Xie Y. Metallic Few-Layered VS2 Ultrathin Nanosheets: High Two-Dimensional Conductivity for In-Plane Supercapacitors[J]. J. Am. Chem. Soc., 2011,133(44):17832-17838. doi: 10.1021/ja207176c

    28. [28]

      Wu D X, Wang C Y, Wu M G, Chao Y F, He P B, Ma J M. Porous Bowl-Shaped VS2 Nanosheets/Graphene Composite for High-Rate Lithium-Ion Storage[J]. J. Energy Chem., 2020,43:24-32. doi: 10.1016/j.jechem.2019.08.003

    29. [29]

      Sun S J, Xie Z L, Yan Y R, Wu S P. Hybrid Energy Storage Mechanisms for Sulfur-Decorated Ti3C2 MXene Anode Material for HighRate and Long-Life Sodium-Ion Batteries[J]. Chem. Eng. J., 2019,366:460-467. doi: 10.1016/j.cej.2019.01.185

    30. [30]

      Zhang Y Q, Zhan R M, Xu Q J, Liu H, Tao M L, Luo Y S, Bao S J, Li C M, Xu M W. Circuit Board-like CoS/MXene Composite with Superior Performance for Sodium Storage[J]. Chem. Eng. J., 2019,357:220-225. doi: 10.1016/j.cej.2018.09.142

    31. [31]

      Li X, Fu J T, Sun Y P, Sun M, Cheng S B, Chen K J, Yang X G, Lou Q, Xu T T, Shang Y Y, Xu J M, Chen Q, Shan C X. Design and Understanding of Core/Branch-Structured VS2 Nanosheets@CNTs as High-Performance Anode Materials for Lithium-Ion Batteries[J]. Nanoscale, 2019,11(28):13343-13353. doi: 10.1039/C9NR03581H

    32. [32]

      Du Y P, Yin Z Y, Zhu J X, Huang X, Wu X J, Zeng Z Y, Yan Q Y, Zhang H. A General Method for the Large-Scale Synthesis of Uniform Ultrathin Metal Sulphide Nanocrystals[J]. Nat. Commun., 2012,31177. doi: 10.1038/ncomms2181

    33. [33]

      Wu K D, Feng Y F, Huang J, Bai C, He M. Mo-Doped 3D Carbon@Sn as High Performance Anode Material for Lithium Ion Batteries[J]. Chem. Phys. Lett., 2020,756137832. doi: 10.1016/j.cplett.2020.137832

    34. [34]

      Xia A, Zhao C P, Yu W R, Han Y P, Yi J, Tan G Q. Mo-Doped δ-MnO2 Anode Material Synthesis and Electrochemical Performance for Lithium-Ion Batteries[J]. J. Appl. Electrochem., 2020,50(7):733-744. doi: 10.1007/s10800-020-01431-2

    35. [35]

      Chen H W, Lu Y D, Zhu H J, Guo Y C, Hu R, Khatoon R, Chen L X, Zeng Y J, Jiao L, Leng J X, Lu J G. Crystalline SnO2@Amorphous TiO2 Core-Shell Nanostructures for High-Performance Lithium Ion Batteries[J]. Electrochim. Acta, 2019,310:203-21200. doi: 10.1016/j.electacta.2019.04.134

  • 加载中
    1. [1]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    12. [12]

      Yaping WangPengcheng YuanZeyuan XuXiong-Xiong LiuShengfa FengMufan CaoChen CaoXiaoqiang WangLong PanZheng-Ming Sun . Ti3C2Tx MXene in-situ transformed Li2TiO3 interface layer enabling 4.5 V-LiCoO2/sulfide all-solid-state lithium batteries with superior rate capability and cyclability. Chinese Chemical Letters, 2024, 35(6): 108776-. doi: 10.1016/j.cclet.2023.108776

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Kaihui Huang Boning Feng Xinghua Wen Lei Hao Difa Xu Guijie Liang Rongchen Shen Xin Li . Effective photocatalytic hydrogen evolution by Ti3C2-modified CdS synergized with N-doped C-coated Cu2O in S-scheme heterojunctions. Chinese Journal of Structural Chemistry, 2023, 42(12): 100204-100204. doi: 10.1016/j.cjsc.2023.100204

    20. [20]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

Metrics
  • PDF Downloads(16)
  • Abstract views(888)
  • HTML views(195)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return