Citation: Li-Xia FENG, Qiao-Ling LIU, Si-Si FENG, Yu-Cui HOU, Yue-Kui WANG. Chiroptical Properties of Mixed-Ligand Ruthenabenzene Complex[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 665-674. doi: 10.11862/CJIC.2022.079 shu

Chiroptical Properties of Mixed-Ligand Ruthenabenzene Complex

Figures(6)

  • The theoretical study of reaction mechanism and relationship between chiral configuration and property of chiral ruthenium complexes is an important topic. In this work, the chiroptical properties of the mixed-ligand ruthenabenzene complex [RuBen(PPh3)2(Phen) (L-Cys)]2+ (Phen=phenanthroline, L-Cys=L-cysteine) have been explored using the hybrid density functional theory (DFT). The geometrical and electronic structures and subsequent frequency verifications were calculated using the B3LYP method with the mixed basis set: the ECP28MWB pseudopotential with its (8s 7p6d2f)/[6s5p3d2f] valence basis set for ruthenium, and 6-311G(d) for other atoms. Based on these, the excited energies, rotational and oscillator strengths, as well as the electronic circular dichroism (ECD) spectra, were then calculated employing the time-dependent DFT method with the same functional and basis set. In all cases, solvent (water) effects were included using the polarized continuum model (PCM). Additionally, the intricate exciton-splitting pattern in the short wavelength region was analyzed using the exciton chirality method (ECM). The calculated ECD spectra were in good agreement with the observed ones as far as their band shape, signs, and relative intensities were concerned. The Λ/Δ configurations at the octahedral core dominate the distribution of the ECD curves, and the λ/δ twists of the L-Cys rings only affect the relative intensities of the absorption bands, while the contributions of the R/S chiral carbon atoms are negligible. The absorption bands above 340 nm are characterized by the ππ * transitions mixed with some metal-centered dd transitions. The two pairs of ECD bands below 340 nm with clearly different intensities could be assigned to the classical (the strong one) and nonclassical (the weak one) exciton coupling, respectively. Both show a positive exciton-splitting pattern for the Λ-configuration, which could be used as a criterion to determine the absolute configurations of similar complexes. Additionally, comparing with mixed-ligand inorganic ruthenium complexes reveals the similarities and differences in their chiroptical properties.
  • 加载中
    1. [1]

      XU Z X, LI L F, BAI X L, XU S F. Enantiomeric Helical Frameworks with dia Net Based on Rigid Ligands from Spontaneous Resolution[J]. Chinese J. Inorg. Chem., 2021,37(7):1191-1196.  

    2. [2]

      CHENG L, YANG J H, ZHAI Q C, ZHANG Q S. A Chiral Ag(Ⅰ) Coordination Polymer Based on an α, α-L-Diaryl Prolinol-Pyridine Derivative: Circular Dichroism, SHG Response and Luminescent Property[J]. Chinese J. Inorg. Chem., 2020,36(2):361-367.  

    3. [3]

      Zhao X, Nguyen E T, Hong A N, Feng P Y, Bu X H. Chiral Isocamphoric Acid: Founding a Large Family of Homochiral Porous Materials[J]. Angew. Chem. Int. Ed., 2018,57(24):7101-7105. doi: 10.1002/anie.201802911

    4. [4]

      Santos A R, Escudero D, González L, Orellana G. Unravelling the Quenching Mechanisms of a Luminescent Ru Probe for Cu[J]. Chem. Asian J., 2015,10(3):622-629. doi: 10.1002/asia.201403340

    5. [5]

      Knoll J D, Turro C. Control and Utilization of Ruthenium and Rhodium Metal Complex Excited States for Photoactivated Cancer Therapy[J]. Coord. Chem. Rev., 2015,282-283:110-126. doi: 10.1016/j.ccr.2014.05.018

    6. [6]

      Estalayo-Adrián S, Garnir K, Moucheron C. Perspectives of Ruthenium Polyazaaromatic Photo -oxidizing Complexes Photoreactive towards Tryptophan-Containing Peptides and Derivatives[J]. Chem. Commun., 2018,54:322-337. doi: 10.1039/C7CC06542F

    7. [7]

      Padhi S K, Fukuda R, Ehara M, Tanaka K. Photoisomerization and Proton-Coupled Electron Transfer (PCET) Promoted Water Oxidation by Mononuclear Cyclometalated Ruthenium Catalysts[J]. Inorg. Chem., 2012,51(9):5386-5392. doi: 10.1021/ic3003542

    8. [8]

      Feng L X, Wang Y K, Jia J. Triplet Ground-State-Bridged Photochemical Process: Understanding the Photoinduced Chiral Inversion at the Metal Center of[Ru(phen)2(L-Ser)] + and Its Bipy Analogues[J]. Inorg. Chem., 2017,56(23):14467-14476. doi: 10.1021/acs.inorgchem.7b02030

    9. [9]

      Feng L X, Wang Y K. A Key Factor Dominating the Competition between Photolysis and Photoracemization of [Ru(bipy)3]2+ and [Ru(phen)3]2+ Complexes[J]. Inorg. Chem., 2018,57(15):8994-9001. doi: 10.1021/acs.inorgchem.8b00975

    10. [10]

      Salassa L, Borfecchia E, Ruiu T, Garino C, Gianolio D, Gobetto R, Sadler P J, Cammarata M, Wulff M, Lamberti C. Photo-induced Pyridine Substitution in cis-[Ru(bpy)2(py)2]Cl2: A Snapshot by Time-Resolved X-ray Solution Scattering[J]. Inorg. Chem., 2010,49(23):11240-11248. doi: 10.1021/ic102021k

    11. [11]

      Wang Y, Wang Y K, Wang J M, Liu Y, Yang Y T. Theoretical Analysis of the Individual Contributions of Chiral Arrays to the Chiroptical Properties of Tris -diamine Ruthenium Chelates[J]. J. Am. Chem. Soc., 2009,131(25):8839-8847. doi: 10.1021/ja9004738

    12. [12]

      Zhu J, Jia G C, Lin Z Y. Understanding Nonplanarity in Metallabenzene Complexes[J]. Organometallics, 2007,26(8):1986-1995. doi: 10.1021/om0701367

    13. [13]

      Lin R, Zhao J, Chen H Y, Zhang H, Xia H P. Interconversion of Metallabenzenes and Cyclic η2-Allene-Coordinated Complexes[J]. Chem. Asian J., 2012,7(8):1915-1924. doi: 10.1002/asia.201200231

    14. [14]

      Wang T D, Li S H, Zhang H, Lin R, Han F F, Lin Y M, Wen T B, Xia H P. Annulation of Metallabenzenes: From Osmabenzene to Osmabenzothiazole to Osmabenzoxazole[J]. Angew. Chem. Int. Ed., 2009,48(35):6453-6456. doi: 10.1002/anie.200902738

    15. [15]

      Iron M A, Lucassen A C B, Cohen H, van der Boom M E, Martin J M L. A Computational Foray into the Formation and Reactivity of Metallabenzenes[J]. J. Am. Chem. Soc., 2004,126(37):11699-11710. doi: 10.1021/ja047125e

    16. [16]

      Yang J, Jones W M, Dixon J K, Allison N T. Detection of a Ruthena-benzene, Ruthenaphenoxide, and Ruthenaphenanthrene Oxide: The First Metalla Aromatics of a Second-Row Transition Metal[J]. J. Am. Chem. Soc., 1995,117(38):9776-9777. doi: 10.1021/ja00143a029

    17. [17]

      Zhang H, Xia H P, He G M, Wen T B, Gong L, Jia G C. Synthesis and Characterization of Stable Ruthenabenzenes[J]. Angew. Chem. Int. Ed., 2006,45(18):2920-2923. doi: 10.1002/anie.200600055

    18. [18]

      Lin R, Zhang H, Li S H, Wang J N, Xia H P. New Highly Stable Metallabenzenes via Nucleophilic Aromatic Substitution Reaction[J]. Chem. Eur. J., 2011,17(15):4223-4231. doi: 10.1002/chem.201003566

    19. [19]

      Zhang H, Lin R, Li J H, Zhu J, Xia H P. Interconversion between Ruthenacyclohexadiene and Ruthenabenzene: A Combined Experimental and Theoretical Study[J]. Organometallics, 2014,33(19):5606-5609. doi: 10.1021/om500550a

    20. [20]

      Lin R, Zhang H, Li S H, Chen L, Zhang W, Wen T B, Zhang H, Xia H. pH-Switchable Inversion of the Metal-Centered Chirality of Metallabenzenes: Opposite Stereodynamics in Reactions of Ruthena-benzene with L-and D-Cysteine[J]. Chem. Eur. J., 2011,17(8):2420-2427. doi: 10.1002/chem.201001867

    21. [21]

      Andrae D, Häußermann U, Dolg M, Stoll H, Preuß H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements[J]. Theor. Chim. Acta, 1990,77(2):123-141. doi: 10.1007/BF01114537

    22. [22]

      Martin J M L, Sundermann A. Correlation Consistent Valence Basis Sets for Use with the Stuttgart-Dresden-Bonn Relativistic Effective Core Potentials: The Atoms Ga-Kr and In-Xe[J]. J. Chem. Phys., 2001,114(8):3408-3420. doi: 10.1063/1.1337864

    23. [23]

      Kurapkat G, Krüger P, Wollmer A, Fleischhauer J, Kramer B, Zobel E, Koslowski A, Botterweck H, Woody R W. Calculations of the CD Spectrum of Bovine Pancreatic Ribonuclease[J]. Biopolymers, 1997,41(3):267-287. doi: 10.1002/(SICI)1097-0282(199703)41:3<267::AID-BIP3>3.0.CO;2-Q

    24. [24]

      Berova N, Polavarapu P L, Nakanishi K, Woody R W. Comprehensive Chiroptical Spectroscopy: Instrumentation, Methodologies, and Theoretical Simulations. New Jersey: John Wiley & Sons, 2012: 525-540

    25. [25]

      Zhang H, Feng L, Gong L, Wu L Q, He G M, Wen T B, Yang F Z, Xia H P. Synthesis and Characterization of Stable Ruthenabenzenes Starting from HC≡CCH(OH)C≡CH[J]. Organometallics, 2007,26(10):2705-2713. doi: 10.1021/om070195k

    26. [26]

      Bosnich B. The Absolute Configurations of Bis-Bidentate Chelate Compounds. The Case of the cis-Bis(pyridine)bis(o-phenanthroline)-Ruthenium(Ⅱ) Ion[J]. Inorg. Chem., 1968,7(1):178-180. doi: 10.1021/ic50059a044

  • 加载中
    1. [1]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    2. [2]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    5. [5]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    6. [6]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    7. [7]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    8. [8]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    9. [9]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    14. [14]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    15. [15]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    18. [18]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    19. [19]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    20. [20]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

Metrics
  • PDF Downloads(4)
  • Abstract views(512)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return