Citation: Feng-Qian YAN, Xin-Guo JING, Ting-Yun FAN, He-Sheng ZHU, Shan LIU, Cheng-Xu LIU, Xi WU, Guo-Yu DING, Wei-Wei JIANG, Chang-Xin TANG, Fu-Gen SUN. Preparation and Electrochemical Performance of Selenium/Sulfur/Carbon Composite Cathode Materials Based on Chain-like Small SemSn (2≤m+n≤4) Molecules[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 645-653. doi: 10.11862/CJIC.2022.078 shu

Preparation and Electrochemical Performance of Selenium/Sulfur/Carbon Composite Cathode Materials Based on Chain-like Small SemSn (2≤m+n≤4) Molecules

Figures(5)

  • Chain-like small SemSn (2≤m +n≤4) molecules were successfully constructed in the ultra-microporous car- bons (UMC) by the incorporation of Se into the chain - like small S2-4 molecules and space - confining of UMC, and then used as cathode materials for lithium-sulfur (Li-S) batteries. Compared with the chain-like small S2-4 molecules, the chain - like small SemSn (2≤m+n≤4) molecules have higher electronic conductivity, lower lithiation energy, and higher electrochemical activity. Moreover, the obtained UMC/SemSn (2≤m+n≤4) composites exhibited a one -step sol- id conversion behavior during the discharge process, which could effectively prohibit the shuttle and loss of active materials in Li - S batteries. Compared with UMC/S2-4 composites, UMC/SemSn (2≤m+n≤4) composites deliver lower charge-transfer resistance and higher discharge specific capacity. Therefore, UMC/SemSn-40 (2≤m+n≤4, wSeS2wUMC=4∶6) composites maintained a high reversible specific capacity of 844 mAh·g-1 at the current rate of 0.1C after 100 cycles and long-term cycling stability over 500 cycles with the capacity decay rate of about 0.07% per cycle at the current rate of 0.5C.
  • 加载中
    1. [1]

      Ji X L, Lee K T, Nazar L F. A Highly Ordered Nanostructured CarbonSulphur Cathode for Lithium-Sulphur Batteries[J]. Nat. Mater., 2009,8:500-506. doi: 10.1038/nmat2460

    2. [2]

      Yang Y, Zheng G Y, Cui Y. Nanostructured Sulfur Cathodes[J]. Chem. Soc. Rev., 2013,42:3018-3032. doi: 10.1039/c2cs35256g

    3. [3]

      Li N, Wang Y R, Tang D M, Zhou H S. Integrating a Photocatalyst into a Hybrid Lithium-Sulfur Battery for Direct Storage of Solar Energy[J]. Angew. Chem., 2015,127:9403-9406. doi: 10.1002/ange.201503425

    4. [4]

      Li C X, Yin L W. Sulfur Immobilized in Hierarchically Porous Structured Carbon as Cathodes for Lithium - Sulfur Battery with Improved Electrochemical Performance[J]. Part. Part. Syst. Charact., 2015,32:756-763. doi: 10.1002/ppsc.201400259

    5. [5]

      Zhou J, Lin N, Cai W L, Guo C, Zhang K L, Zhou J B, Zhu Y C, Qian Y T. Synthesis of S/CoS2 Nanoparticles-Embedded N-Doped Carbon Polyhedrons from Polyhedrons ZIF-67 and Their Properties in Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2016,218:243-251. doi: 10.1016/j.electacta.2016.09.130

    6. [6]

      Li G, Sun J H, Hou W P, Jiang S D, Huang Y, Geng J X. Three-Dimensional Porous Carbon Composites Containing High Sulfur Nanoparticle Content for High Performance Lithium-Sulfur Batteries[J]. Nat. Commun., 2016,7:10601-10608. doi: 10.1038/ncomms10601

    7. [7]

      Sun F G, Wang J T, Long D H, Qiao W M, Ling L C, Lv C X, Cai R. A High-Rate Lithium-Sulfur Battery Assisted by Nitrogen-Enriched Mesoporous Carbons Decorated with Ultrafine La2O3 Nanoparticles[J]. J. Mater. Chem. A, 2013,1:13283-13289. doi: 10.1039/c3ta12846f

    8. [8]

      Sun F G, Wang J T, Chen H C, Qiao W M, Ling L C, Long D H. Bottom Up Catalytic Approach towards Nitrogen-Enriched Mesoporous Carbons/Sulfur Composites for Superior Li-S Cathodes[J]. Sci. Rep., 2013,3:2823-2830. doi: 10.1038/srep02823

    9. [9]

      Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar L F. A Highly Efficient Polysulfide Mediator for Lithium-Sulfur Batteries[J]. Nat. Commun., 2015,6:5682-5690. doi: 10.1038/ncomms6682

    10. [10]

      Zhu T C, Pang Y, Wang Y G, Wang C X, Xia Y Y. S0.87Se0.13/CPAN Composites as High Capacity and Stable Cycling Performance Cathode for Lithium Sulfur Battery[J]. Electrochim. Acta, 2018,281:789-795. doi: 10.1016/j.electacta.2018.06.026

    11. [11]

      Zhang Z A, Jiang S F, Lai Y Q, Li J M, Song J X, Li J. Selenium Sulfifide@Mesoporous Carbon Aerogel Composite for Rechargeable Lithium Batteries with Good Electrochemical Performance[J]. J. Power Sources, 2015,284:95-102. doi: 10.1016/j.jpowsour.2015.03.019

    12. [12]

      Zhao-Karger Z R, Lin X M, Minella C B, Di W, Diemant T, Behm R J, Fichtner M. Selenium and Selenium-Sulfur Cathode Materials for High-Energy Rechargeable Magnesium Batteries[J]. J. Power Sources, 2016,323:213-219. doi: 10.1016/j.jpowsour.2016.05.034

    13. [13]

      Dua H, Feng S H, Luo W, Zhou L, Mai L Q. Advanced Li-SexSy Battery System: Electrodes and Electrolytes[J]. J. Mater. Sci. Technol., 2020,55:1-15. doi: 10.1016/j.jmst.2020.01.001

    14. [14]

      Abouimrane A, Dambournet D W, Chapman K J, Chupas P, Weng W, Amine K. A New Class of Lithium and Sodium Rechargeable Batteries Based on Selenium and Selenium-Sulfur as a Positive Electrode[J]. J. Am. Chem. Soc., 2012,134:4505-4508. doi: 10.1021/ja211766q

    15. [15]

      ZHUANG L. Design of Cathode Materials for Lithium-Selenium Batteries[J]. Acta Phys. -Chim. Sin., 2019,35(7):665-666.  

    16. [16]

      LIU S, YAO L, ZHANG Q, LI L L, HU N T, WEI L M, WEI H. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Phys.- Chim. Sin., 2017,33:2339-2358. doi: 10.3866/PKU.WHXB201706021

    17. [17]

      Zhang H W, Zhou L, Huang X D, Song H, Yu C Z. Encapsulation of Selenium Sulfide in Double-Layered Hollow Carbon Spheres as Advanced Electrode Material for Lithium Storage[J]. Nano Res., 2016,9(12):3725-3734. doi: 10.1007/s12274-016-1243-2

    18. [18]

      Zhang B, Qin X, Lia G R, Gao X P. Enhancement of Long Stability of Sulfur Cathode by Encapsulating Sulfur into Micropores of Carbon Spheres[J]. Energy Environ. Sci., 2010,3:1531-1537. doi: 10.1039/c002639e

    19. [19]

      Xin S, Gu L, Zhao N H, Yin Y X, Zhou L J, Guo Y G, Wan L J. Smaller Sulfur Molecules Promise Better Lithium-Sulfur Batteries[J]. J. Am. Chem. Soc., 2012,134(45):18510-18513. doi: 10.1021/ja308170k

    20. [20]

      Guo B S, Yang T T, Du W Y, Ma Q R, Zhang L Z, Bao S J, Li X Y, Chen Y, Xu M W. Double-Walled N-Doped Carbon@NiCo2S4 Hollow Capsules as SeS2 Hosts for Advanced Li-SeS2 Batteries[J]. J. Mater. Chem. A, 2019,7:12276-12282. doi: 10.1039/C9TA02695A

    21. [21]

      He J R, Lu W Q, Chen Y F, Xiong J, Wen K C, Chen X, Zhang W L, Li Y R, Qin W, He W D. Direct Impregnation of SeS2 into a MOF-Derived 3D Nanoporous Co-N-C Architecture towards Superior Rechargeable Lithium Batterie[J]. J. Mater. Chem. A, 2018,6:10466-10473. doi: 10.1039/C8TA02434K

    22. [22]

      Chen T, Kong W H, Fan M T, Zhang Z W, Wang L, Chen R P, Hu Y, Ma J, Jin Z. Chelation-Assisted Formation of Multi-Yolk-Shell Co4N@Carbon Nanoboxes for Self-Discharge Suppressed High-Performance Li-SeS2 Batterie[J]. J. Mater. Chem. A, 2019,7:20302-20309. doi: 10.1039/C9TA07127J

    23. [23]

      Li Z, Zhang J T, Bu Y G, Xiong W L. Mesoporous Carbon@Titanium Nitride Hollow Spheres as an Efficient SeS2 Host for Advanced Li-SeS2 Batterie[J]. Angew. Chem. Int. Ed., 2017,56:16003-16007. doi: 10.1002/anie.201709176

    24. [24]

      Xu G L, Liu J Z, Amine R, Chen Z H, Amine K. Selenium and Selenium-Sulfur Chemistry for Rechargeable Lithium Batteries: Interplay of Cathode Structures, Electrolytes, and Interfaces[J]. ACS Energy Lett., 2017,2:605-614. doi: 10.1021/acsenergylett.6b00642

    25. [25]

      Zhang W C, Wang H Q, Zhang N, Liu H G, Chen Z, Zhang L J, Guo S P, Li D, Xu J Z. One-Step In Situ Preparation of Polymeric Selenium Sulfifide Composite as a Cathode Material for Enhanced Sodium/ Potassium Storage[J]. ACS Appl. Mater. Interfaces, 2019,11:9807-9443.

    26. [26]

      Li S P, Zhang W, Zeng Z Q, Cheng S J, Xie J. Selenium or Tellurium as Eutectic Accelerators for High-Performance Lithium/Sodium-Sulfur Batteries[J]. Electrochem. Energy Rev., 2020,3:613-642. doi: 10.1007/s41918-020-00072-5

    27. [27]

      Yang C P, Xin S, Yin Y X, Ye H, Zhang J, Guo Y G. An Advanced Selenium-Carbon Cathode for Rechargeable Lithium-Selenium Batteries[J]. Angew. Chem. Int. Ed., 2013,52:8363-8367. doi: 10.1002/anie.201303147

    28. [28]

      Bucur C B, Bonnick P, Jones M, Muldoon J. The Evolution of Selenium Cathodes: From Infusion Melts to Particle Synthesis[J]. Sustainable Energy Fuels, 2018,2:759-762. doi: 10.1039/C8SE00017D

    29. [29]

      Eftekhari A. The Rise of Lithium-Selenium Batteries[J]. Sustainable Energy Fuels, 2017,1:14-29. doi: 10.1039/C6SE00094K

    30. [30]

      Li X N, Liang J W, Zhang K H, Zhang W Q, Zhu Y C, Qian Y T. Amorphous S-Rich S1-xSex /C (x≤0.1) Composites Promise Better Lithium-Sulfur Batteries in a Carbonate-Based Electrolyte[J]. Energy Environ. Sci., 2015,8:3181-3186. doi: 10.1039/C5EE01470K

    31. [31]

      Sun F G, Cheng H Y, Chen J Z, Zheng N, Li Y S, Shi J L. Heteroatomic SenS8-n Molecules Confifined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High Performance Lithium Batteries[J]. ACS Nano, 2016,10:8289-8298. doi: 10.1021/acsnano.6b02315

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    4. [4]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    13. [13]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    14. [14]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    15. [15]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    16. [16]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    17. [17]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    18. [18]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    19. [19]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    20. [20]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

Metrics
  • PDF Downloads(2)
  • Abstract views(475)
  • HTML views(57)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return