Citation: Wen-Long ZHANG, Ying-Yuan HU, Ying-Li WANG, Rui LI, Jian-Li LI, Bin-Sheng YANG. Interaction of Melittin and Calf Thymus DNA[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 629-636. doi: 10.11862/CJIC.2022.073 shu

Interaction of Melittin and Calf Thymus DNA

  • Corresponding author: Bin-Sheng YANG, yangbs@sxu.edu.cn
  • Received Date: 1 November 2021
    Revised Date: 20 December 2021

Figures(9)

  • The binding of melittin (Mel) to Calf Thymus DNA (CT-DNA) and conformation change were described by circular dichroism (CD) spectra, UV-Vis spectra, fluorescence spectra, and isothermal titration calorimetry (ITC) in 10 mmol·L-1 HEPES buffer (pH=7.4). The results showed that Mel could form a complex with CT-DNA. The for- mation of the complex changed the conformation of Mel from random coil to α-helix as shown by CD spectra. The red edge excitation shift (REES) studies of tryptophan (Trp) residue in Mel indicated that Trp residue is located in the more hydrophobic environment in the complex with DNA, exactly as demonstrated by fluorescence lifetime and acrylamide experiments. Additionally, the double helix structure of CT-DNA changed and the CT-DNA melting tem- perature (Tm) increased from 64.3 to 66.2 ℃ once a complex was formed with Mel. Finally, the ITC experiment dem- onstrated that the binding of Mel to CT-DNA is an endothermic process. The interaction between Mel and CT-DNA was further characterized by an equilibrium association constant (Ka) of about 105 L·mol-1. The enthalpy contribu- tion to the free energy of binding was little, and nearly three times less than the entropic term TΔS calculated from measured values of Ka and ΔH. Thus, the binding of CT -DNA to Mel is primarily driven by entropy, demonstrating electrostatic and hydrophobic interactions playing roles in the formation of the complex. The ionic strength effect and single - stranded DNA (ssDNA) quenching effect further verified that electrostatic interaction and hydrophobic interactions coexist between them and electrostatic interaction is the predominant one.
  • 加载中
    1. [1]

      Habermann E. Bee and Wasp Venoms[J]. Science, 1972,177(4046):314-322. doi: 10.1126/science.177.4046.314

    2. [2]

      Terwilliger T C, Eisenberg D. The Structure of Melittin. Ⅰ. Structure Determination and Partial Refinement[J]. J. Biol. Chem., 1982,257(11):6010-6015. doi: 10.1016/S0021-9258(20)65097-9

    3. [3]

      Miura Y. NMR Chemical Shift Analysis of the Conformational Transition between the Monomer and Tetramer of Melittin in an Aqueous Solution[J]. Eur. Biophys. J., 2016,45(4):347-354. doi: 10.1007/s00249-015-1102-1

    4. [4]

      Therrien A, Fournier A, Lafleur M. Role of the Cationic C - Terminal Segment of Melittin on Membrane Fragmentation[J]. J. Phys. Chem. B, 2016,120(17):3993-4002. doi: 10.1021/acs.jpcb.5b11705

    5. [5]

      Moreno M, Giralt E. Three Valuable Peptides from Bee and Wasp Venoms for Therapeutic and Biotechnological Use: Melittin, Apamin and Mastoparan[J]. Toxins, 2015,7(4):1126-1150. doi: 10.3390/toxins7041126

    6. [6]

      Follenius-Wund A, Mely Y, Gerard D. Spectroscopic Evidence of Two Melittin Molecules Bound to Ca2+-Calmodulin[J]. Biochem. Int., 1987,15(4):823-833.

    7. [7]

      Memariani H, Memariani M. Anti-fungal Properties and Mechanisms of Melittin[J]. Appl. Microbiol. Biotechnol., 2020,104:6513-6526. doi: 10.1007/s00253-020-10701-0

    8. [8]

      LI X Z, SUN X J, YAN H S, HE B L. Antimicrobial and Hemolytic Activities of Melittin and Its Analogues and Their Interactions with Phospholipid Membranes[J]. Chem. J. Chinese Universities, 2005,26(1):73-77. doi: 10.3321/j.issn:0251-0790.2005.01.013

    9. [9]

      He S D, Tan N, Sun C X, Liao K H, Zhu H J, Luo X G, Zhang J Y, Li D Y, Huang S G. Treatment with Melittin Induces Apoptosis and Autophagy of Fifibroblastlike Synoviocytes in Patients with Rheumatoid Arthritis[J]. Curr. Pharm. Biotechnol., 2020,21(8):734-740. doi: 10.2174/1389201021666191210110826

    10. [10]

      Gajski G, Garaj-Vrhovac V. Melittin: A Lytic Peptide with Anticancer Properties[J]. Environ. Toxicol. Pharmacol., 2013,36(2):697-705. doi: 10.1016/j.etap.2013.06.009

    11. [11]

      Ceremuga M, Stela M, Janik E, Gorniak L, Synowiec E, Sliwinski T, Sitarek P, Saluk-Bijak J, Bijak M. Melittin—A Natural Peptide from Bee Venom which Induces Apoptosis in Human Leukaemia Cells[J]. Biomolecules, 2020,10(2)247. doi: 10.3390/biom10020247

    12. [12]

      Memariani H, Memariani M, Moravvej H, Shahidi-Dadras M. Melittin: A Venom - derived Peptide with Promising Antiviral Properties[J]. Eur. J. Clin. Microbiol. Infect. Dis., 2020,39:5-17. doi: 10.1007/s10096-019-03674-0

    13. [13]

      Kim S J, Park J H, Kim K H, Lee W R, Kim K S, Park K K. Melittin Inhibits Atherosclerosis in LPS/High-Fat Treated Mice through Atheroprotective Actions[J]. J. Atheroscler. Thromb., 2011,18(12):1117-1126. doi: 10.5551/jat.8474

    14. [14]

      Paray B A, Ahmad A, Khan J M, Taufiq F, Pathan A, Malik A, Ahmed M Z. The Role of the Multifunctional Antimicrobial Peptide Melittin in Gene Delivery[J]. Drug Discov. Today, 2021,26(4):1053-1059. doi: 10.1016/j.drudis.2021.01.004

    15. [15]

      Wang T J, Zhang J, Xiao A J, Liu W Q, Shang Y, An J D. Melittin Ameliorates CVB3 - Induced Myocarditis via Activation of the HDAC2 - Mediated GSK - 3β/Nrf2/ARE Signaling Pathway[J]. Biochem. Biophys. Res. Commun., 2016,480(1):126-131. doi: 10.1016/j.bbrc.2016.09.135

    16. [16]

      Gajski G, Domijan A M, Žegura B, Štern A, Gerić M, Jovanović I N, Vrhovac I, Madunić J, Breljak D, Filipič M, Garaj-Vrhovac V. Melittin Induced Cytogenetic Damage, Oxidative Stress and Changes in Gene Expression in Human Peripheral Blood Lymphocytes[J]. Toxicon, 2016,110:56-67. doi: 10.1016/j.toxicon.2015.12.005

    17. [17]

      Zhao Y Q, Feng J Y, Liang A H, Yang B S. The Binding of Euplotes Octocarinatus Centrin with Target Peptide Melittin[J]. Chin. Sci. Bull., 2007,52(23):3216-3220. doi: 10.1007/s11434-007-0476-6

    18. [18]

      Zhang W L, Shi E X, Zhao Y Q, Yang B S. Modulation Effect of Double Strand DNA on the Self-Assembly of N-Terminal Domain of Euplotes Octocarinatus Centrin[J]. J. Inorg. Biochem., 2018,180:15-25. doi: 10.1016/j.jinorgbio.2017.12.001

    19. [19]

      Zhang W L, Shi E X, Feng Y N, Zhao Y Q, Yang B S. Endonucleaselike Activity of the N - Terminal Domain of Euplotes Octocarinatus Centrin[J]. RSC Adv., 2017,7(82):51773-51788. doi: 10.1039/C7RA07907A

    20. [20]

      Wilcox W, Eisenberg D. Thermodynamics of Melittin Tetramerization Determined by Circular Dichroism and Implications for Protein Folding[J]. Protein Sci., 1992,1(5):641-653. doi: 10.1002/pro.5560010510

    21. [21]

      Kypr J, Kejnovská I, Renciuk D, Vorlícková M. Circular Dichroism and Conformational Polymorphism of DNA[J]. Nucleic Acids Res., 2009,37(6):1713-1725. doi: 10.1093/nar/gkp026

    22. [22]

      DONG Q, YE X W, YANG J, WANG W M, ZHAO Y Q, YANG B S. Inhibition of Functions for C-Terminal Domain of Euplotes Octocarinatus Centrin by Chlorpromazine Hydrochloride[J]. Chinese J. Inorg. Chem., 2021,37(1):23-32.  

    23. [23]

      Hall K, Lee T H, Aguilar M I. The Role of Electrostatic Interactions in the Membrane Binding of Melittin[J]. J. Mol. Recognit., 2011,24(1):108-118. doi: 10.1002/jmr.1032

    24. [24]

      Shi E X, Zhang W L, Zhao Y Q, Yang B S. Binding of Euplotes Octocarinatus Centrin to Peptide from Xeroderma Pigmentosum Group C Protein (XPC)[J]. RSC Adv., 2017,7(44):27139-27149. doi: 10.1039/C7RA03079G

    25. [25]

      Han L N, Zhou Y H, Huang X Q, Xiao M S, Zhou L, Zhou J H, Wang A H, Shen J. A Multi - spectroscopic Approach to Investigate the Interaction of Prodigiosin with CT - DNA[J]. Spectrochim. Acta Part A, 2014,123:497-502. doi: 10.1016/j.saa.2013.11.088

    26. [26]

      Kirby E P, Steiner R F. The Tryptophan Microenvironments in Apomyoglobin[J]. J. Biol. Chem., 1970,245(23):6300-6306. doi: 10.1016/S0021-9258(18)62609-2

    27. [27]

      Khatun U L, Mukhopadhyay C. Interaction of Bee Venom Toxin Melittin with Ganglioside GM1 Bicelle[J]. Biophys. Chem., 2013,180-181:66-75. doi: 10.1016/j.bpc.2013.06.012

    28. [28]

      Bhunia A, Domadia P N, Bhattacharjya S. Structural and Thermodynamic Analyses of the Interaction between Melittin and Lipopolysaccharide[J]. Biochim. Biophys. Acta - Biomembr., 2007,1768(12):3282-3291. doi: 10.1016/j.bbamem.2007.07.017

    29. [29]

      Demchenko A P. Red-Edge-Excitation Fluorescence Spectroscopy of Single-Tryptophan Proteins[J]. Eur. Biophys. J., 1988,16(2):121-129.

    30. [30]

      Chen W, Turro N J, Tomalia D A. Using Ethidium Bromide to Probe the Interactions between DNA and Dendrimers[J]. Langmuir, 2000,16(1):15-19. doi: 10.1021/la981429v

    31. [31]

      Solovyev A Y, Tarnovskaya S I, Chernova I A, Shataeva L K, Skorik Y A. The Interaction of Amino Acids, Peptides, and Proteins with DNA[J]. Int. J. Biol. Macromol., 2015,78:39-45. doi: 10.1016/j.ijbiomac.2015.03.054

    32. [32]

      Chai J, Wang J Y, Xu Q F, Hao F, Liu R T. Multispectroscopic Methods Combined with Molecular Modeling Dissect the Interaction Mechanisms of Ractopamine and Calf Thymus DNA[J]. Mol. Biosyst., 2012,8(7):1902-1907. doi: 10.1039/c2mb25095k

    33. [33]

      Tian L L, Zhang W, Yang B, Lu P, Zhang M, Lu D, Ma Y G, Shen J C. Zinc(Ⅱ)-Induced Color-Tunable Fluorescence Emission in the π-Conjugated Polymers Composed of the Bipyridine Unit: A Way to Get White - Light Emission[J]. J. Phys. Chem. B, 2005,109(15):6944-6947. doi: 10.1021/jp050375c

    34. [34]

      Goparaju G N, Satishchandran C, Gupta P K. The Effect of the Structure of Small Cationic Peptides on the Characteristics of Peptide - DNA Complexes[J]. Int. J. Pharm., 2009,369(1/2):162-169.

    35. [35]

      Wilkins M H. Physical Studies of the Molecular Structure of Deoxyribose Nucleic Acid and Nucleoprotein[J]. Cold Spring Harb Symp. Quant. Biol., 1956,21:75-90. doi: 10.1101/SQB.1956.021.01.007

    36. [36]

      Malinin V V, Khavinson V K. Interaction between Small Peptides and DNA Double Helix[J]. Basel: Karger, 2005:64-87.

  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Peipei CUIXin LIYilin CHENZhilin CHENGFeiyan GAOXu GUOWenning YANYuchen DENG . Transition metal coordination polymers with flexible dicarboxylate ligand: Synthesis, characterization, and photoluminescence property. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2221-2231. doi: 10.11862/CJIC.20240234

    3. [3]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    4. [4]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    5. [5]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    6. [6]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    7. [7]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    8. [8]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    9. [9]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    10. [10]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    11. [11]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    12. [12]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    13. [13]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    14. [14]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    15. [15]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    16. [16]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    17. [17]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    18. [18]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    19. [19]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    20. [20]

      Kun LiuYulin CongXiongfeng LuoMeicun YaoZhiyong XieHao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839

Metrics
  • PDF Downloads(5)
  • Abstract views(810)
  • HTML views(88)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return