Citation: Rui GAO, Zhen-Yu WANG, Lu WANG, Peng CHEN, Sheng LIU, Zhi-Peng MA, Guang-Jie SHAO. Ni2P Nanosheets on Graphene as Sulfur-Based Composite Cathode Material for Lithium-Sulfur Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 685-694. doi: 10.11862/CJIC.2022.070 shu

Ni2P Nanosheets on Graphene as Sulfur-Based Composite Cathode Material for Lithium-Sulfur Batteries

Figures(5)

  • In this work, nickel phosphide (Ni2P) nanosheets were dispersed uniformly on graphene (G) to fabricate the Ni2P/G composite. Furthermore, the S/Ni2P/G sulfur-based composite was prepared further for lithium-sulfur batteries. Due to the strong chemical absorbability and high electrocatalytic activity of Ni2P nanosheets towards soluble polysulfides, S/Ni2P/G composite showed superior electrochemical performance. In particular, under the condition of high sulfur content (80.3%) and low electrolyte usage (15 μL·mg-1), S/Ni2P/G composite delivered a high initial specific discharge capacity of 1 164.7 mAh·g-1 and good cycling stability. In addition, due to the high tap density of 1.02 g·cm-3, S/Ni2P/G composite showed a high volumetric capacity of 954.0 mAh·cm-3, almost 1.6 times of that for S/G composite.
  • 加载中
    1. [1]

      Chen L, Shaw L L. Recent Advances in Lithium-Sulfur Batteries[J]. J. Power Sources, 2014,267:770-783. doi: 10.1016/j.jpowsour.2014.05.111

    2. [2]

      Deng W J, Phung J, Li G, Wang X L. Realizing High-Performance Lithium-Sulfur Batteries via Rational Design and Engineering Strategies[J]. Nano Energy, 2021,82105761. doi: 10.1016/j.nanoen.2021.105761

    3. [3]

      Huang X, Wang Z L, Knibbe R, Luo B, Ahad S A, Sun D, Wang L Z. Cyclic Voltammetry in Lithium-Sulfur Batteries-Challenges and Opportunities[J]. Energy Technol., 2019,71801001.

    4. [4]

      Seh Z W, Sun Y M, Zhang Q F, Cui Y. Designing High-Energy Lithium-Sulfur Batteries[J]. Chem. Soc. Rev., 2016,45(20):5605-5634. doi: 10.1039/C5CS00410A

    5. [5]

      Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. A Cooperative Interface for Highly Efficient Lithium-Sulfur Batteries[J]. Adv. Mater., 2016,28(43):9551-9558. doi: 10.1002/adma.201603401

    6. [6]

      Deng C, Wang Z W, Wang S P, Yu J X. Inhibition of Polysulfide Diffusion in Lithium-Sulfur Batteries: Mechanism and Improvement Strategies[J]. J. Mater. Chem. A, 2019,7(20):12381-12413. doi: 10.1039/C9TA00535H

    7. [7]

      Song J X, Yu Z X, Xu T, Chen S R, Sohn H, Regula M, Wang D H. Flexible Freestanding Sandwich-Structured Sulfur Cathode with Superior Performance for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2014,2(23):8623-8627. doi: 10.1039/C4TA00742E

    8. [8]

      Xiang J W, Guo Z Z, Yi Z Q, Zhang Y, Yuan L X, Cheng Z X, Shen Y, Huang Y H. Facile Synthesis of Sulfurized Polyacrylonitrile Composite as Cathode for High-Rate Lithium-Sulfur Batteries[J]. J. Energy Chem., 2020,49(10):161-165.

    9. [9]

      Li H X, Ma S, Li J W, Liu F Y, Zhou H H, Huang Z Y, Jiao S Q, Kuang Y F. Altering the Reaction Mechanism to Eliminate the Shuttle Effect in Lithium-Sulfur Batteries[J]. Energy Storage Mater., 2020,26(1):203-212.

    10. [10]

      Zhang B H, Wu J F, Gu J K, Li S, Yan T Y, Gao X P. The Fundamental Understanding of Lithium Polysulfides in Ether-Based Electrolyte for Lithium-Sulfur Batteries[J]. ACS Energy Lett., 2021,6(2):537-546. doi: 10.1021/acsenergylett.0c02527

    11. [11]

      Zuo P J, Hua J F, He M X, Zhang H, Qian Z Y, Ma Y L, Du C Y, Cheng X Q, Gao Y Z, Yin G P. Facilitating the Redox Reaction of Polysulfides by an Electrocatalytic Layer-Modified Separator for Lithium-Sulfur Batteries[J]. J. Mater. Chem. A, 2017,5(22):10936-10945. doi: 10.1039/C7TA02245J

    12. [12]

      Ma L, Zhuang H L, Wei S Y, Hendrickson K E, Kim M S, Cohn G, Hennig R G, Archer L A. Enhanced Li-S Batteries Using Amine-Functionalized Carbon Nanotubes in the Cathode[J]. ACS Nano, 2016,10(1):1050-1059. doi: 10.1021/acsnano.5b06373

    13. [13]

      Zu C X, Manthiram A. Hydroxylated Graphene-Sulfur Nanocomposites for High-Rate Lithium-Sulfur Batteries[J]. Adv. Energy Mater., 2013,3(8):1008-1012. doi: 10.1002/aenm.201201080

    14. [14]

      XU J J, LI B, LI S M, LIU J H, YU M. Preparation and Electrochemical Performance of Sulfur/Mesoporous Carbon Composites as Cathodes for Lithium-Sulfur Batteries[J]. Chinese J. Inorg. Chem., 2015,31(10):2030-2036.  

    15. [15]

      Zeng L C, Pan F S, Li W H, Jiang Y, Zhong X W, Yu Y. Free-Standing Porous Carbon Nanofibers-Sulfur Composite for Flexible Li-S Battery Cathode[J]. Nanoscale, 2014,6(16):9579-9587. doi: 10.1039/C4NR02498B

    16. [16]

      Pei F, An T H, Zang J, Zhao X J, Fang X L, Zheng M S, Dong Q F, Zheng N F. From Hollow Carbon Spheres to N-Doped Hollow Porous Carbon Bowls: Rational Design of Hollow Carbon Host for Li-S Batteries[J]. Adv. Energy Mater., 2016,6(8)1502539. doi: 10.1002/aenm.201502539

    17. [17]

      Wang Z Y, Wang L, Liu S, Li G R, Gao X P. Conductive CoOOH as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite for Lithium-Sulfur Battery[J]. Adv. Funct. Mater., 2019,29(23)1901051. doi: 10.1002/adfm.201901051

    18. [18]

      Wu J, Pan Z J, Dai Y, Wang T, Zhang H P, Yan S, Xu J M, Song K X. Encapsulation of Sulfur Cathodes by Sericin-Derived Carbon/Co3O4 Hollow Microspheres for the Long-Term Cyclability of Lithium-Sulfur Batteries[J]. J. Alloys Compd., 2020,823153912. doi: 10.1016/j.jallcom.2020.153912

    19. [19]

      Guo P Q, Liu D Q, Liu Z J, Shang X N, Liu Q M, He D Y. Dual Functional MoS2/Graphene Interlayer as an Efficient Polysulfide Barrier for Advanced Lithium-Sulfur Batteries[J]. Electrochim. Acta, 2017,256(1):28-36.

    20. [20]

      Wang Z Y, Han D D, Liu S, Li G R, Yan T Y, Gao X P. Conductive RuO2 Stacking Microspheres as an Effective Sulfur Immobilizer for Lithium-Sulfur Battery[J]. Electrochim. Acta, 2020,337135772. doi: 10.1016/j.electacta.2020.135772

    21. [21]

      Wang L, Song Y H, Zhang B H, Liu Y T, Wang Z Y, Li G R, Liu S, Gao X P. Spherical Metal Oxides with High Tap Density as Sulfur Host to Enhance Cathode Volumetric Capacity for Lithium-Sulfur Battery[J]. ACS Appl. Mater. Interfaces, 2020,12(5):5909-5919. doi: 10.1021/acsami.9b20111

    22. [22]

      Zhang Z, Wu D H, Zhou Z, Li G R, Liu S, Gao X P. Sulfur/Nickel Ferrite Composite as Cathode with High-Volumetric-Capacity for Lithium-Sulfur Battery[J]. Sci. China Mater., 2019,62(1):74-86. doi: 10.1007/s40843-018-9292-7

    23. [23]

      Liu Y T, Han D D, Wang L, Li G R, Liu S, Gao X P. NiCo2O4 Nanofibers as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based Composite with High Volumetric Capacity for Lithium-Sulfur Battery[J]. Adv. Energy Mater., 2019,9(11)1803477. doi: 10.1002/aenm.201803477

    24. [24]

      Liu Y T, Liu S, Li G R, Yan T Y, Gao X P. High Volumetric Energy Density Sulfur Cathode with Heavy and Catalytic Metal Oxide Host for Lithium-Sulfur Battery[J]. Adv. Sci., 2020,7(12)1903693. doi: 10.1002/advs.201903693

    25. [25]

      PAN P F, CHEN P, FANG Y N, SHAN Q, CHEN N N, FENG X M, LIU R Q, LI P, MA Y W. V2O5 Hollow Spheres as High Efficient Sulfur Host for Li-S Batteries[J]. Chinese J. Inorg. Chem., 2020,36(3):575-583.  

    26. [26]

      YANG X L, WU Z H, ZHANG Y J, HE X J, JIA J Z, YANG X Z, ZHOU J L. Application of Needle-like NiCo2O4@Carbon Cloth Composites in Lithium-Sulfur Batteries[J]. Chinese J. Inorg. Chem., 2021,37(11):1943-1949. doi: 10.11862/CJIC.2021.222 

    27. [27]

      Xi K, He D Q, Harris C, Wang Y K, Lai C, Li H L, Coxon P R, Ding S J, Wang C, Kumar R V. Enhanced Sulfur Transformation by Multifunctional FeS2/FeS/S Composites for High-Volumetric Capacity Cathodes in Lithium-Sulfur Batteries[J]. Adv. Sci., 2019,6(6)1800815. doi: 10.1002/advs.201800815

    28. [28]

      Chen T, Zhang Z W, Cheng B R, Chen R P, Hu Y, Ma L B, Zhu G Y, Liu J, Jin Z. Self-Templated Formation of Interlaced Carbon Nano-tubes Threaded Hollow Co3S 4 Nanoboxes for High-Rate and Heat-Resistant Lithium-Sulfur Batteries[J]. J. Am. Chem. Soc., 2017,139(36):12710-12715. doi: 10.1021/jacs.7b06973

    29. [29]

      Ma L B, Zhang W J, Wang L, Hu Y, Zhu G Y, Wang Y R, Chen R P, Chen T, Tie Z X, Liu J, Jin Z. Strong Capillarity, Chemisorption, and Electrocatalytic Capability of Crisscrossed Nanostraws Enabled Flexible, High-Rate, and Long-Cycling Lithium-Sulfur Batteries[J]. ACS Nano, 2018,12(5):4868-4876. doi: 10.1021/acsnano.8b01763

    30. [30]

      CHEN P, LIU Y R, PAN P F, FANG Y N, SHAN Q, FENG X M, LIU R Q, LIN X J, MA Y W. Assembly and Application for Li-S Batteries of Multi-Walled Carbon Nanotube-Vanadium Nitride Hollow Sphere Composite[J]. Chinese J. Inorg. Chem., 2021,37(7):1184-1190.  

    31. [31]

      Ma L B, Yuan H, Zhang W J, Zhu G Y, Wang Y R, Hu Y, Zhao P Y, Chen R P, Chen T, Liu J, Hu Z, Jin Z. Porous-Shell Vanadium Nitride Nanobubbles with Ultrahigh Areal Sulfur Loading for High-Capacity and Long-Life Lithium-Sulfur Batteries[J]. Nano Lett., 2017,17(12):7839-7846. doi: 10.1021/acs.nanolett.7b04084

    32. [32]

      Ma L B, Lin H N, Zhang W J, Zhao P Y, Zhu G Y, Hu Y, Chen R P, Tie Z X, Liu J, Jin Z. Nitrogen-Doped Carbon Nanotube Forests Planted on Cobalt Nanoflowers as Polysulfide Mediator for Ultralow Self-Discharge and High Areal-Capacity Lithium-Sulfur Batteries[J]. Nano Lett., 2018,18(12):7949-7954. doi: 10.1021/acs.nanolett.8b03906

    33. [33]

      Li Z Y, Zou Y L, Duan J L, Long B. Coral-like CoP Hollow Composites as Effective Host Cathodes for Lithium-Sulfur Batteries[J]. Ionics, 2019,25(28):4625-4635.

    34. [34]

      Yu S L, Cai W L, Chen L, Song L X, Song Y Z. Recent Advances of Metal Phosphides for Li-S Chemistry[J]. J. Energy Chem., 2021,55:533-548. doi: 10.1016/j.jechem.2020.07.020

    35. [35]

      Cheng J H, Zhao D, Fan L S, Wu X, Wang M X, Zhang N Q, Sun K N. Ultra-High Rate Li-S Batteries Based on a Novel Conductive Ni2P Yolk-Shell Material as the Host for the S Cathode[J]. J. Mater. Chem. A, 2017,5(28):14519-14524. doi: 10.1039/C7TA03236F

    36. [36]

      Yan W, Wei J, Chen T, Duan L, Wang L, Xue X L, Chen R P, Kong W H, Lin H N, Li C H, Jin Z. Superstretchable, Thermostable and Ultrahigh-Loading Lithium-Sulfur Batteries Based on Nanostructural Gel Cathodes and Gel Electrolytes[J]. Nano Energy, 2021,80105510. doi: 10.1016/j.nanoen.2020.105510

    37. [37]

      Jiang Y C, Arshad H M U, Li H J, Liu S, Li G R, Gao X P. Crystalline Multi-Metallic Compounds as Host Materials in Cathode for Lithium-Sulfur Batteries[J]. Small, 2021,17(22)2005332. doi: 10.1002/smll.202005332

    38. [38]

      Ren J T, Hu Z P, Chen C, Liu Y P, Yuan Z Y. Integrated Ni2P Nanosheet Arrays on Three-Dimensional Ni Foam for Highly Efficient Water Reduction and Oxidation[J]. J. Energy Chem., 2017,26(6):1196-1202. doi: 10.1016/j.jechem.2017.07.016

    39. [39]

      He M X, Feng C Q, Liao T, Hu S N, Wu H M, Sun Z Q. Low-Cost Ni2P/Ni0.96S Heterostructured Bifunctional Electrocatalyst toward Highly Efficient Overall Urea-Water Electrolysis[J]. ACS Appl. Mater. Interfaces, 2020,12(2):2225-2233. doi: 10.1021/acsami.9b14350

    40. [40]

      Dou Y Y, Li G R, Song J, Gao X P. Nickel Phosphide-Embedded Graphene as Counter Electrode for Dye-Sensitized Solar Cells[J]. Phys. Chem. Chem. Phys., 2012,14(4):1339-1342. doi: 10.1039/C2CP23775J

    41. [41]

      An C H, Wang Y J, Wang Y P, Liu G, Li L, Qiu F Y, Xu Y N, Jiao L F, Yuan H T. Facile Synthesis and Superior Supercapacitor Performances of Ni2P/rGO Nanoparticles[J]. RSC Adv., 2013,3:4628-4633. doi: 10.1039/c3ra00079f

    42. [42]

      Wang S, Xie Y, Shi K Y, Zhou W, Xing Z P, Pan K, Cabot A. Monodispersed Nickel Phosphide Nanocrystals In Situ Grown on Reduced Graphene Oxide with Controllable Size and Composition as a Counter Electrode for Dye-Sensitized Solar Cells[J]. ACS Sustainable Chem. Eng., 2020,8(15):5920-5926. doi: 10.1021/acssuschemeng.0c00005

    43. [43]

      Liu G Z, Zhang Z C Y, Tian W Z, Chen W H, Xi B J, Li H B, Feng J K, Xiong S L. Ni12P5 Nanoparticles Bound on Graphene Sheets for Advanced Lithium-Sulfur Batteries[J]. Nanoscale, 2020,12(19):10760-10770. doi: 10.1039/C9NR10680D

    44. [44]

      Wang L, Li G R, Liu S, Gao X P. Hollow Molybdate Microspheres as Catalytic Hosts for Enhancing the Electrochemical Performance of Sulfur Cathode under High Sulfur Loading and Lean Electrolyte[J]. Adv. Funct. Mater., 2021,31(18)2010693. doi: 10.1002/adfm.202010693

    45. [45]

      Gueon D, Ju M Y, Moon J H. Complete Encapsulation of Sulfur through Interfacial Energy Control of Sulfur Solutions for High-Performance Li-S Batteries[J]. Proc. Natl. Acad. Sci. U.S.A., 2020,117(23):12686-12692. doi: 10.1073/pnas.2000128117

    46. [46]

      Wang Z Y, Wang H M, Liu S, Li G R, Gao X P. To Promote the Catalytic Conversion of Polysulfides Using Ni-B Alloy Nanoparticles on Carbon Nanotube Microspheres under High Sulfur Loading and a Lean Electrolyte[J]. ACS Appl. Mater. Interfaces, 2021,13(17):20222-20232. doi: 10.1021/acsami.1c03791

    47. [47]

      Zhang F, Li Z, Cao T, Qin K, Xu Q J, Liu H M, Xia Y Y. Multishelled Ni2P Microspheres as Multifunctional Sulfur Host 3D-Printed Cathode Materials Ensuring High Areal Capacity of Lithium-Sulfur Batteries[J]. ACS Sustainable Chem. Eng., 2021,9(17):6097-6106. doi: 10.1021/acssuschemeng.1c01580

  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    7. [7]

      Yu ZHANGFangfang ZHAOCong PANPeng WANGLiangming WEI . Application of double-side modified separator with hollow carbon material in high-performance Li-S battery. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1218-1232. doi: 10.11862/CJIC.20230412

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    10. [10]

      Hongyao Li Youyan Liu Luwei Dai Min Yang Qihui Wang . The Blessing of Indium Sulfide:Confronting the Narrow Path with Uric Acid. University Chemistry, 2024, 39(5): 325-335. doi: 10.3866/PKU.DXHX202311104

    11. [11]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    12. [12]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    13. [13]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    14. [14]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    15. [15]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    18. [18]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    20. [20]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

Metrics
  • PDF Downloads(6)
  • Abstract views(844)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return