Citation: Song-Li DAI, Yong-Chao LIANG, Jia-Jun MA. First Principles Study on Mg2Ge Doping with Transition Metal Elements Sc, Cr, and Mn[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 637-644. doi: 10.11862/CJIC.2022.069 shu

First Principles Study on Mg2Ge Doping with Transition Metal Elements Sc, Cr, and Mn

  • Corresponding author: Yong-Chao LIANG, 20113248@qq.com
  • Received Date: 4 November 2021
    Revised Date: 15 December 2021

Figures(8)

  • In this study, the electronic structures and magnetic and optical properties of Mg2Ge doping with transition metal elements X (X=Sc, Cr, and Mn) were investigated by density functional theory (DFT). The lattice constants, band structures, density of states, and optical parameters were calculated for all compounds. The results show that the Fermi level of Mg2Ge can enter into the conduction band after doping with Sc, and Mg2 Ge turns into an n-type degenerate semiconductor. It can lead to spin splitting of the band structure and density of states of Mg2Ge near Fermi level after doping with Cr and Mn, resulting in a net magnetic moment, which is shown as a semi-metallic magnet and dilute magnetic semiconductor. The net magnetic moment of the system is derived from the 3d orbital electrons of impurity atoms and their induced polarization of Ge4p state and Mg2p state spintronics. Compared with the intrinsic Mg2Ge, the doping systems have an improvement in the static permittivity, which indicates that the photocatalytic activity of Mg2Ge is enhanced. In terms of the absorption coefficient, the compounds with impurity atoms extend the absorption range, and the best enhancement appears near-infrared band.
  • 加载中
    1. [1]

      Cahana M, Gelbstein Y. Bismuth Doping of Induction Furnace Synthesized Mg2Si, Mg2Sn and Mg2Ge Thermoelectric Compounds[J]. Intermetallics, 2020,120106767. doi: 10.1016/j.intermet.2020.106767

    2. [2]

      Santos R, Nancarrow M, Dou S X, Yamini S A. Thermoelectric Performance of n-Type Mg2Ge[J]. Sci. Rep., 2017,7(1)3988. doi: 10.1038/s41598-017-04348-7

    3. [3]

      Jung J Y, Kim I H. Synthesis and Thermoelectric Properties of n-Type Mg2Si[J]. Electron. Mater. Lett., 2010,6(4):187-191. doi: 10.3365/eml.2010.12.187

    4. [4]

      Wang H F, Jin H, Chu W G, Guo Y J. Thermodynamic Properties of Mg2Si and Mg2Ge Investigated by First Principles Method[J]. J. Alloys Compd., 2010,41(27):68-74.

    5. [5]

      LIU H Y, ZHU Z Z, YANG Y. The Reaction Sequence of Lithiation in Mg2Ge and the Changes of Its Electronic Structure[J]. Acta Phys. Sin., 2008,57(8):5182-5190. doi: 10.3321/j.issn:1000-3290.2008.08.082

    6. [6]

      Bai G N, Tian J Z, Guo Q W, Li Z Q, Zhao Y H. First Principle Study on Mg2X (X=Si, Ge, Sn) Intermetallics by Bi Micro-alloying[J]. Crystals, 2021,11(2)142. doi: 10.3390/cryst11020142

    7. [7]

      Gao H L, Zhu T J, Zhao X B, Deng Y. Influence of Sb Doping on Thermoelectric Properties of Mg2Ge Materials[J]. Intermetallics, 2015,56:33-36. doi: 10.1016/j.intermet.2014.08.010

    8. [8]

      Chuang L, Savvides N, Tan T T, Li S. Thermoelectric Properties of Ag - Doped Mg2Ge Thin Films Prepared by Magnetron Sputtering[J]. J. Electron. Mater., 2010,39(9):1971-1974. doi: 10.1007/s11664-009-1052-4

    9. [9]

      Yücel İ. The Structural, Electronic, Optic and Thermoelectric Properties of Impurity Doped Mg2Ge Compounds: DFT Study[J]. J. Phys. Chem. Solids, 2022,160110351. doi: 10.1016/j.jpcs.2021.110351

    10. [10]

      Cheng G, Xiang Z. Two - Dimensional Magnetic Crystals and Emergent Heterostructure Devices[J]. Science, 2019,363(6428)eaav4450. doi: 10.1126/science.aav4450

    11. [11]

      Kebabi A, Bentabet A, Djeffal F, Ferhati H, Benmekideche N, Benmakhlouf A, Chala A. DFT Study of X - Doped (X=Cu, Ag, Au) Boron Nitride Nanotubes for Spintronic and Optoelectronic Applications[J]. Optik, 2021,225165863. doi: 10.1016/j.ijleo.2020.165863

    12. [12]

      WANG S X, ZHAO X C, PAN D Q, PANG G W, LIU C X, SHI L Q, LIU G A, LEI B C, HUANG Y N, ZHANG L L. First Principle Study of Influence of Transition Metal (Cr, Mn, Fe, Co) Doping on Magnetism of TiO2[J]. Acta Phys. Sin., 2020,69(19):270-280.  

    13. [13]

      Wu P, Cao G Y, Tang F L, Huang M. Electronic and Magnetic Properties of Transition Metal Doped MgO Sheet: A Density - Functional Study[J]. Comput. Mater. Sci., 2014,86:180-185. doi: 10.1016/j.commatsci.2014.01.052

    14. [14]

      Kohn W, Becke A D, Parr R G. Density Functional Theory of Electronic Structure[J]. J. Phys. Chem. Solid, 1996,100:12974-12980.

    15. [15]

      Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z. Substitutional Position and Insulator-to-Metal Transition in Nb - Doped SrTiO3[J]. Mater. Chem. Phys., 2007,107(2):215-219.

    16. [16]

      Guo T T, Dong G B, Chen Q, Diao X G, Gao F Y. First-Principles Calculation on p-Type Conduction of (Sb, N) Co-doping in ZnO[J]. J. Phys. Chem. Solids, 2014,75(1):42-47. doi: 10.1016/j.jpcs.2013.08.006

    17. [17]

      Mead C A. Photothresholds in Mg2Ge[J]. J. Appl. Phys., 1964,35(8):2460-2462. doi: 10.1063/1.1702881

    18. [18]

      Kutorasinski K, Wiendlocha B, Tobola J, Kaprzyk S. Importance of Relativistic Effects in Electronic Structure and Thermopower Calculations for Mg2Si, Mg2Ge and Mg2Sn[J]. Phys. Rev. B, 2014,89115205. doi: 10.1103/PhysRevB.89.115205

    19. [19]

      Sun J, Wang H T, He J L, Tian Y J. Ab Initio Investigations of Optical Properties of the High - Pressure Phases of ZnO[J]. Phys. Rev. B, 2005,71125132. doi: 10.1103/PhysRevB.71.125132

    20. [20]

      Brown G F, Wu J Q. Third Generation Photovoltaics[J]. Laser Photon. Rev., 2009,3(4):394-405. doi: 10.1002/lpor.200810039

    21. [21]

      David R P. Wave-Number-Dependent Dielectric Function of Semiconductors[J]. Phys. Rev., 1962,128(5):2093-2097. doi: 10.1103/PhysRev.128.2093

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    9. [9]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    19. [19]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

Metrics
  • PDF Downloads(10)
  • Abstract views(1003)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return