Citation: Song-Li DAI, Yong-Chao LIANG, Jia-Jun MA. First Principles Study on Mg2Ge Doping with Transition Metal Elements Sc, Cr, and Mn[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 637-644. doi: 10.11862/CJIC.2022.069 shu

First Principles Study on Mg2Ge Doping with Transition Metal Elements Sc, Cr, and Mn

  • Corresponding author: Yong-Chao LIANG, 20113248@qq.com
  • Received Date: 4 November 2021
    Revised Date: 15 December 2021

Figures(8)

  • In this study, the electronic structures and magnetic and optical properties of Mg2Ge doping with transition metal elements X (X=Sc, Cr, and Mn) were investigated by density functional theory (DFT). The lattice constants, band structures, density of states, and optical parameters were calculated for all compounds. The results show that the Fermi level of Mg2Ge can enter into the conduction band after doping with Sc, and Mg2 Ge turns into an n-type degenerate semiconductor. It can lead to spin splitting of the band structure and density of states of Mg2Ge near Fermi level after doping with Cr and Mn, resulting in a net magnetic moment, which is shown as a semi-metallic magnet and dilute magnetic semiconductor. The net magnetic moment of the system is derived from the 3d orbital electrons of impurity atoms and their induced polarization of Ge4p state and Mg2p state spintronics. Compared with the intrinsic Mg2Ge, the doping systems have an improvement in the static permittivity, which indicates that the photocatalytic activity of Mg2Ge is enhanced. In terms of the absorption coefficient, the compounds with impurity atoms extend the absorption range, and the best enhancement appears near-infrared band.
  • 加载中
    1. [1]

      Cahana M, Gelbstein Y. Bismuth Doping of Induction Furnace Synthesized Mg2Si, Mg2Sn and Mg2Ge Thermoelectric Compounds[J]. Intermetallics, 2020,120106767. doi: 10.1016/j.intermet.2020.106767

    2. [2]

      Santos R, Nancarrow M, Dou S X, Yamini S A. Thermoelectric Performance of n-Type Mg2Ge[J]. Sci. Rep., 2017,7(1)3988. doi: 10.1038/s41598-017-04348-7

    3. [3]

      Jung J Y, Kim I H. Synthesis and Thermoelectric Properties of n-Type Mg2Si[J]. Electron. Mater. Lett., 2010,6(4):187-191. doi: 10.3365/eml.2010.12.187

    4. [4]

      Wang H F, Jin H, Chu W G, Guo Y J. Thermodynamic Properties of Mg2Si and Mg2Ge Investigated by First Principles Method[J]. J. Alloys Compd., 2010,41(27):68-74.

    5. [5]

      LIU H Y, ZHU Z Z, YANG Y. The Reaction Sequence of Lithiation in Mg2Ge and the Changes of Its Electronic Structure[J]. Acta Phys. Sin., 2008,57(8):5182-5190. doi: 10.3321/j.issn:1000-3290.2008.08.082

    6. [6]

      Bai G N, Tian J Z, Guo Q W, Li Z Q, Zhao Y H. First Principle Study on Mg2X (X=Si, Ge, Sn) Intermetallics by Bi Micro-alloying[J]. Crystals, 2021,11(2)142. doi: 10.3390/cryst11020142

    7. [7]

      Gao H L, Zhu T J, Zhao X B, Deng Y. Influence of Sb Doping on Thermoelectric Properties of Mg2Ge Materials[J]. Intermetallics, 2015,56:33-36. doi: 10.1016/j.intermet.2014.08.010

    8. [8]

      Chuang L, Savvides N, Tan T T, Li S. Thermoelectric Properties of Ag - Doped Mg2Ge Thin Films Prepared by Magnetron Sputtering[J]. J. Electron. Mater., 2010,39(9):1971-1974. doi: 10.1007/s11664-009-1052-4

    9. [9]

      Yücel İ. The Structural, Electronic, Optic and Thermoelectric Properties of Impurity Doped Mg2Ge Compounds: DFT Study[J]. J. Phys. Chem. Solids, 2022,160110351. doi: 10.1016/j.jpcs.2021.110351

    10. [10]

      Cheng G, Xiang Z. Two - Dimensional Magnetic Crystals and Emergent Heterostructure Devices[J]. Science, 2019,363(6428)eaav4450. doi: 10.1126/science.aav4450

    11. [11]

      Kebabi A, Bentabet A, Djeffal F, Ferhati H, Benmekideche N, Benmakhlouf A, Chala A. DFT Study of X - Doped (X=Cu, Ag, Au) Boron Nitride Nanotubes for Spintronic and Optoelectronic Applications[J]. Optik, 2021,225165863. doi: 10.1016/j.ijleo.2020.165863

    12. [12]

      WANG S X, ZHAO X C, PAN D Q, PANG G W, LIU C X, SHI L Q, LIU G A, LEI B C, HUANG Y N, ZHANG L L. First Principle Study of Influence of Transition Metal (Cr, Mn, Fe, Co) Doping on Magnetism of TiO2[J]. Acta Phys. Sin., 2020,69(19):270-280.  

    13. [13]

      Wu P, Cao G Y, Tang F L, Huang M. Electronic and Magnetic Properties of Transition Metal Doped MgO Sheet: A Density - Functional Study[J]. Comput. Mater. Sci., 2014,86:180-185. doi: 10.1016/j.commatsci.2014.01.052

    14. [14]

      Kohn W, Becke A D, Parr R G. Density Functional Theory of Electronic Structure[J]. J. Phys. Chem. Solid, 1996,100:12974-12980.

    15. [15]

      Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z. Substitutional Position and Insulator-to-Metal Transition in Nb - Doped SrTiO3[J]. Mater. Chem. Phys., 2007,107(2):215-219.

    16. [16]

      Guo T T, Dong G B, Chen Q, Diao X G, Gao F Y. First-Principles Calculation on p-Type Conduction of (Sb, N) Co-doping in ZnO[J]. J. Phys. Chem. Solids, 2014,75(1):42-47. doi: 10.1016/j.jpcs.2013.08.006

    17. [17]

      Mead C A. Photothresholds in Mg2Ge[J]. J. Appl. Phys., 1964,35(8):2460-2462. doi: 10.1063/1.1702881

    18. [18]

      Kutorasinski K, Wiendlocha B, Tobola J, Kaprzyk S. Importance of Relativistic Effects in Electronic Structure and Thermopower Calculations for Mg2Si, Mg2Ge and Mg2Sn[J]. Phys. Rev. B, 2014,89115205. doi: 10.1103/PhysRevB.89.115205

    19. [19]

      Sun J, Wang H T, He J L, Tian Y J. Ab Initio Investigations of Optical Properties of the High - Pressure Phases of ZnO[J]. Phys. Rev. B, 2005,71125132. doi: 10.1103/PhysRevB.71.125132

    20. [20]

      Brown G F, Wu J Q. Third Generation Photovoltaics[J]. Laser Photon. Rev., 2009,3(4):394-405. doi: 10.1002/lpor.200810039

    21. [21]

      David R P. Wave-Number-Dependent Dielectric Function of Semiconductors[J]. Phys. Rev., 1962,128(5):2093-2097. doi: 10.1103/PhysRev.128.2093

  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    4. [4]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    5. [5]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    6. [6]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    7. [7]

      Zhihao HEJiafu DINGYunjie WANGXin SU . First-principles study on the structure-property relationship of AlX and InX (X=N, P, As, Sb). Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1007-1019. doi: 10.11862/CJIC.20240390

    8. [8]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    9. [9]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    10. [10]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    11. [11]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    12. [12]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    13. [13]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    14. [14]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    17. [17]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    20. [20]

      Yueyue WEIXuehua SUNHongmei CHAIWanqiao BAIYixia RENLoujun GAOGangqiang ZHANGJun ZHANG . Two Ln-Co (Ln=Eu, Sm) metal-organic frameworks: Structures, magnetism, and fluorescent sensing sulfasalazine and glutaraldehyde. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2475-2485. doi: 10.11862/CJIC.20240193

Metrics
  • PDF Downloads(18)
  • Abstract views(1981)
  • HTML views(478)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return