Effect of Cu2+ Ion A-Site Substitution on Structure and Dielectric Properties of MgTiO3 Ceramics
- Corresponding author: Yuan-Ming LAI, laiyuanming19@cdut.edu.cn
Citation: Xi-Zhi YANG, Fan YANG, Yuan-Ming LAI, Bao-Yang LI, Fan-Shuo WANG, Hua SU. Effect of Cu2+ Ion A-Site Substitution on Structure and Dielectric Properties of MgTiO3 Ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 599-610. doi: 10.11862/CJIC.2022.066
WANG H P, XU S Q, ZHANG Q L, YANG H. Synthesis and Microwave Dielectric Properties of CaMgSi2O6 Nanopowder Prepared at Low Temperature[J]. Chinese J. Inorg. Chem., 2007,41(12):2101-2105. doi: 10.3321/j.issn:1001-4861.2007.12.018
HUANG W Q, ZHANG Q L, YANG H, SHEN Q K. Preparation, Structure and Dielectric Properties of CaTiO3∶Zn Ceramics Based on Sol-Gel Technology[J]. Chinese J. Inorg. Chem., 2012,28(11):2379-2384.
YAN X K, DING S H, ZHANG X H, HUANG L, ZHANG Y. Effect of Li2O-Na2O-B2O3-SiO2 Sintering Aids on Structure and Dielectric Properties of BaAl2Si2O8 Ceramics[J]. Chinese J. Inorg. Chem., 2019,35(8):1357-1362.
Lai Y M, Su H, Wang G, Tang X L, Huang X, Liang X F, Zhang H W, Li Y X, Huang K, Wang X R. Low - Temperature Sintering of Microwave Ceramics with High Qf Values through LiF Addition[J]. J. Am. Ceram. Soc., 2019,102(4):1893-1903.
Lai Y M, Tang X L, Huang X, Zhang H W, Liang X F, Li J, Su H. Phase Composition, Crystal Structure and Microwave Dielectric Properties of Mg2-xCuxSiO4 Ceramics[J]. J. Eur. Ceram. Soc., 2018,38(4):1508-1516. doi: 10.1016/j.jeurceramsoc.2017.10.035
XIAO M, YANG Z, ZHONG X R, XI F F. Influence of Bi2O3 on the Structure and Dielectric Properties of Ag(Nb0.8Ta0.2)O3 Ceramics[J]. Chinese J. Inorg. Chem., 2014,30(3):649-653.
He L, Yu H T, Zeng M S, Li E Z, Liu J S, Zhang S R. Phase Compositions and Microwave Dielectric Properties of MgTiO3-Based Ceramics Obtained by Reaction-Sintering Method[J]. J. Electroceram., 2018,40(4):360-364. doi: 10.1007/s10832-018-0138-x
Zhang Q L, Yang H. Low-Temperature Sintering and Microwave Dielectric Properties of MgTiO3 Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2007,18(9):967-971. doi: 10.1007/s10854-006-9090-7
Santhosh K T, Pamu D. Effect of V2O5 on Microwave Dielectric Properties of Non - stoichiometric MgTiO3 Ceramics[J]. Mater. Sci. Eng. B, 2015,194(4):86-93.
Liu S S, Chen Y B. Dielectric Properties of A Low - Loss (1-x) (Mg0.95Zn0.05)2TiO4 - x(Ca0.8Sr0.2)TiO3 Ceramic System at Microwave Frequencies[J]. J. Electroceram., 2021,3:3-8.
Rabha S, Dobbidi P. Structural, Electrical Properties and Stability in Microwave Dielectric Properties of (1-x)MgTiO3 -xSrTiO3 Composite Ceramics[J]. J. Alloys Compd., 2021,872:1-10.
Dong L, Dong G X, Li Y Y, Zhang X. Preparation and Investigation on Properties of the MgTiO3 - CaTiO3 Microwave Ceramic Materials[J]. Adv. Mater. Res., 2014,997:419-423. doi: 10.4028/www.scientific.net/AMR.997.419
Huang C L, Pan C L, Shium S J. Liquid Phase Sintering of MgTiO3 - CaTiO3 Microwave Dielectric Ceramics[J]. Mater. Chem. Phys., 2003,78(1):111-115. doi: 10.1016/S0254-0584(02)00311-5
Sohn J H, Inaguma Y, Yoon S O, Itoh M, Nakamura T, Yoon S J, Kim H. Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q values[J]. Jpn. J. Appl. Phys., 1994,33:5466-5470. doi: 10.1143/JJAP.33.5466
Lai Y M, Zeng Y M, Han J, Liang X F, Zhong X L, Liu M Z, Duo B, Su H. Structure Dependence of Microwave Dielectric Properties in Zn2-xSiO4-x-xCuO Ceramics[J]. J. Eur. Ceram. Soc., 2021,41(4):2602-2609. doi: 10.1016/j.jeurceramsoc.2020.12.013
Li Y M, Hong W H, Xie Z X, Shen Z Y, Wang Z M. Synthesis and Microwave Dielectric Properties of Cu-Doped ZnAl2O4[J]. Int. J. Appl. Ceram. Technol., 2016,13(5):884-888. doi: 10.1111/ijac.12417
Lai Y M, Tang X L, Zhang H W, Liang X F, Huang X, Li Y X, Su H. Correlation Between Structure and Microwave Dielectric Properties of Low - Temperature - Fired Mg2SiO4 Ceramics[J]. Mater. Res. Bull., 2018,99:496-502. doi: 10.1016/j.materresbull.2017.11.036
Lai Y M, Su H, Wang G, Tang X L, Liang X F H X, Li Y X, Zhang W H, Ye C, Wang X R. Improved Microwave Dielectric Properties of CaMgSi2O6 Ceramics through CuO Doping[J]. J. Alloys Compd., 2019,772:40-48. doi: 10.1016/j.jallcom.2018.09.059
Rodríguez-Carvajal J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction[J]. Physica B, 1993,192:55-69. doi: 10.1016/0921-4526(93)90108-I
Liu X C, Hong R Z, Tian C S. Tolerance Factor and the Stability Discussion of ABO3 - Type Ilmenite[J]. J. Mater. Sci.: Mater. Electron., 2009,20(4):323-327. doi: 10.1007/s10854-008-9728-8
Pauling L. The Nature Of the Chemical Bond. Ⅳ. The Energy of Single Bonds and the Relative Electronegativity of Atoms[J]. J. Am. Chem. Soc., 1932,54(9):3570-3582. doi: 10.1021/ja01348a011
Hameed I, Wu S Y, Li L, Liu X Q, Chen X M. Structure and Microwave Dielectric Characteristics of Sr2[Ti1-x(Al0.5Nb0.5)x]O4 (x≤0.50) Ceramics[J]. J. Am. Ceram. Soc., 2019,102(70):6137-6146.
Yue T, Li L, Du M, Zhan Y. Multilayer Co -fired Microwave Dielectric Ceramics in MgTiO3 - Li2TiO3 System with Linear Temperature Coefficient of Resonant Frequency[J]. Scr. Mater., 2021,205:1-5.
Singh J, Bahel S. Structural, Vibrational, Optical, Dielectric, and Shielding Sharacteristics of (1-x)Mg(Ti0.95Sn0.05)O3 - (x)SrTiO3 (0 ≤ x ≤ 0.1) Ceramics[J]. Mater. Res. Bull., 2021,139:1-13.
Yu Y, Wang Y J, Guo W J, Zhu C Q, Ji A, Wu H, Liang S J, Xiong S, Wang X H. Grain Size Engineered 0.95MgTiO3 -0.05CaTiO3 Ceramics with Excellent Microwave Dielectric Properties and Prominent Mechanical Performance[J]. J. Am. Ceram. Soc., 2021,105(1):299-307.
Wang M J, Yan D. Improved Crystalline Structure and Sintering Characteristics of Nonstoichiometric MgTiO3 Ceramics by Sol - Gel Method[J]. J. Sol-Gel Sci. Technol., 2021,97(2):365-372. doi: 10.1007/s10971-020-05458-x
Sharma K, Bahel S. Structural, Dielectric and Reflection Analysis of ZnxMg1-xTiO3 Ceramics Synthesized Using Auto - Ignition Combustion Method[J]. J. Mater. Sci.: Mater. Electron., 2021,32(23):27216-27231. doi: 10.1007/s10854-021-07088-7
Fang Z X, Yang H Y, Yang H C, Xiong Z, Zhang X, Zhao P, Tang B. Ilmenite-Type MgTiO3 Ceramics by Complex (Mn1/2W1/2)4+ Cation Cosubstitution Producing Improved Microwave Characteristics[J]. Ceram. Int., 2021,47(15):21388-21397. doi: 10.1016/j.ceramint.2021.04.148
Jia X B, Xu Y, Zhao P, Li L H, Li W. Structural Dependence of Microwave Dielectric Properties in Ilmenite - Type Mg(Ti1-xNbx)O3 Solid Solutions by Rietveld Refinement and Raman Spectra[J]. Ceram. Int., 2021,47(4):4820-4830. doi: 10.1016/j.ceramint.2020.10.052
Chen C Y, Peng Z J, Xie L Z, Bi K, Fu X L. Microwave Dielectric Properties of Novel (1-x)MgTiO3-xCa0.5Sr0.5TiO3 Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2020,31(16):13696-13703. doi: 10.1007/s10854-020-03927-1
Chen C Y, Peng Z J, Xie L Z, Bi K, Fu X L. Effects of Adding B2O3 on Microwave Dielectric Properties of 0.962 5MgTiO3-0.037 5(Ca0.5Sr0.5) TiO3 Composite Ceramics[J]. Int. J. Appl. Ceram. Technol., 2020,17(6):2545-2552. doi: 10.1111/ijac.13582
Xu Z P, Li L X, Yu S H, Du M K, Luo W J. Microstructure and Microwave Dielectric Characteristics of Magnesium Fluoride Additive to MgTiO3-(Ca0.8Sr0.2)TiO3 Ceramics[J]. Mater. Lett., 2019,252:191-193. doi: 10.1016/j.matlet.2019.05.136
Singh J, Bahel S. Structural and Dielectric Properties of (BaxMg1-x) (Ti0.95Sn0.05)O3 (x=0.025, 0.05, 0.075 and 0.1) Solid Solutions[J]. J. Mater. Sci.: Mater. Electron., 2019,30(7):6500-6506. doi: 10.1007/s10854-019-00955-4
Xu Z P, Li L X, Yu S H, Du M K, Luo W J. Magnesium Fluoride Doped MgTiO3 Ceramics with Ultra-High Q Value at Microwave Frequencies[J]. J. Alloys Compd., 2019,802:1-5. doi: 10.1016/j.jallcom.2019.06.207
Yu H T, Luo T, He L, Liu J S. Effect of ZnO on Mg2TiO4-MgTiO3 - CaTiO3 Microwave Dielectric Ceramics Prepared by Reaction Sintering Route[J]. Adv. Appl. Ceram., 2019,118(2):98-105.
Xin M, Zhang L M, Chang Y, Xia Y S, Ren L C, Luo X F, Zhou H Q. Influence of Sb2O3 - ZnO Additives on Sintering Characteristics and Dielectric Properties of (Mg0.95Ca0.05)TiO3 Microwave Ceramics[J]. Ceram. Int., 2018,44(14):17107-17112. doi: 10.1016/j.ceramint.2018.06.162
Yuan S F, Gan L, Ning F F, An S B, Jiang J, Zhang T J. High-Q×f 0.95MgTiO3 - 0.05CaTiO3 Microwave Dielectric Ceramics with the Addition of LiF Sintered at Medium Temperatures[J]. Ceram. Int., 2018,44(16):20566-20569. doi: 10.1016/j.ceramint.2018.07.202
Tang B, Xue L X, Li H, Lu J W, Li F H, Zhang S R. Effects of Li2ZnTi3O8 Addition on Sintering Behavior and Microwave Dielectric Properties of the MgTiO3-CaTiO3 Ceramic System[J]. J. Mater. Sci.: Mater. Electron., 2018,29(5):3836-3839. doi: 10.1007/s10854-017-8319-y
Xia Y, Yuan S F, An S B, Jiang J, Gan L, Zhang T J. Microwave Dielectric Properties of the (1-x) (Mg0.97Zn0.03) (Ti0.97Sn0.03)O3 - x (Ca0.8Na0.1Sm0.1)TiO3 Ceramic System[J]. J. Mater. Sci.: Mater. Electron., 2018,29(21):18791-18796. doi: 10.1007/s10854-018-0004-2
Manan A, Ullah Z, Ahmad A S, Ullah A, Khan D F, Hussain A, Khan M U. Phase Microstructure Evaluation and Microwave Dielectric Properties of (1-x)Mg0.95Ni0.05Ti0.98Zr0.02O3 - xCa0.6La0.8/3TiO3 Ceramics[J]. J. Adv. Ceram., 2018,7(1):72-78. doi: 10.1007/s40145-018-0258-4
Liu J, Zhong C W, Tao Y, Chen S, Zhang S R. Microwave Dielectric Characteristics of NdAlO3 - Doped 0.95MgTiO3 -0.05CaTiO3, Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2017,28(1):909-914. doi: 10.1007/s10854-016-5606-y
Lin S H, Chen Y B. Low Dielectric Loss Characteristics of[(Mg1-xZnx)0.95Co0.05]1.02TiO3.02 Ceramics at Microwave Frequencies[J]. J. Mater. Sci. Mater.: Electron., 2017,28(5):4154-4160. doi: 10.1007/s10854-016-6035-7
Wang K G, Zhou H S, Sun W D, Chen X L, Ruan H. Solid - State Reaction Mechanism and Microwave Dielectric Properties of 0.95MgTiO3 - 0.05CaTiO3 Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2018,29(3):2001-2006. doi: 10.1007/s10854-017-8111-z
Liu S, Wang J, Pei X Y, Dai X G, Li Y, Chen J B, Wang C W. The Reversible Wetting Transition Between Superhydrophilicity and Superhydrophobicity of Tremella - like CuxO@CuxS Nanosheets Prepared by One-Step Anodization and the Application of On-Demand Oil/Water Separation[J]. J. Alloys Compd., 2021,889:1-12.
Wang F S, Lai Y M, Zeng Y M, Yang F, Li B Y, Yang X Z, Su H, Han J, Zhong X L. Enhanced Microwave Dielectric Properties in Mg2Al4Si5O18 through Cu2+ Substitution[J]. Eur. J. Inorg. Chem., 2021,2021(25):2464-2470. doi: 10.1002/ejic.202100174
Xiong Z, Yang C T, Tang B, Fang Z X, Chen H T, Zhang S R. Structure-Property Relationships of Perovskite-Structured Ca0.61Nd0.26Ti1-x(Cr0.5Nb0.5)xO3 ceramics[J]. Ceram. Int., 2018,44(7):7384-7392. doi: 10.1016/j.ceramint.2017.12.186
Ullah B, Lei W, Wang X H, Fan G F, Wang X C, Lu W Z. Dielectric and Ferroelectric Behavior of an Incipient Ferroelectric Sr(1- 3x/2)CexTiO3 Novel Solid Solution[J]. RSC Adv., 2016,6(94):91679-91688. doi: 10.1039/C6RA18717J
Lai Y M, Hong C Y, Jin L C, Tang X L, Zhang H W, Huang X, Li J, Su H. Temperature Stability and High-Qf of Low Temperature Firing Mg2SiO4-Li2TiO3 Microwave Dielectric Ceramics[J]. Ceram. Int., 2017,43(18):16167-16173. doi: 10.1016/j.ceramint.2017.08.192
Yang Y, Ma M S, Zhang F Q, Liu F, Chen G Y, Liu Z F, Li Y X. Low-Temperature Sintering of Al2O3 Ceramics Doped with 4CuO - TiO2 - 2Nb2O5 Composite Oxide Sintering Aid[J]. J. Eur. Ceram. Soc., 2020,40(15):5504-5510. doi: 10.1016/j.jeurceramsoc.2020.06.068
Zhang Q, Tang X L, Huang F X, Wu X H, Li Y X, Su H. Enhanced Microwave Dielectric Properties of Wolframite Structured Zn1-xCuxWO4 Ceramics with Low Sintering Temperature[J]. J. Materiomics, 2021,7(6):1309-1317. doi: 10.1016/j.jmat.2021.02.011
Brown I D, Shannon R D. Empirical Bond - Strength - Bond - Length Curves for Oxides[J]. Acta Crystallogr. Sect. A: Found. Crystallogr., 1973,29(3):266-282.
Brown I D, Wu K K. Empirical Parameters for Calculating Cation - Oxygen Bond Valences[J]. Acta Crystallogr. Sect. B: Struct. Sci., 1976,32(7):1957-1959. doi: 10.1107/S0567740876006869
Jo H J, Kim E S. Effects of Structural Characteristics on Microwave Dielectric Properties of MgTi1-x(Mg1/3B2/3)xO3 (B=Nb, Ta)[J]. J. Eur. Ceram. Soc., 2016,36(6):1399-1405. doi: 10.1016/j.jeurceramsoc.2015.12.033
Jo J H, Kim S G, Kim E S. Microwave Dielectric Properties of MgTiO3-Based Ceramics[J]. Ceram. Int., 2015,41(S1):S530-S536.
Wang G, Zhang D N, Li J, Gan G W, Rao Y H, Huang X, Yang Y, Shi L, Liao Y L, Liu C, Jin L C, Zhang H W. Crystal Structure, Bond Energy, Raman Spectra, and Microwave Dielectric Properties of Ti-Doped Li3Mg2NbO6 Ceramics[J]. J. Am. Ceram. Soc., 2020,103(8):4321-4332. doi: 10.1111/jace.17091
Surendran K P, Santha N, Mohanan P, Sebastian M T. Temperature Stable Low Loss Ceramic Dielectrics in (1-x)ZnAl2O4-xTiO2 System for Microwave Substrate Applications[J]. Eur. Phys. J. B, 2004,41(3):301-306. doi: 10.1140/epjb/e2004-00321-8
Shannon R D. Dielectric Polarizabilities of Ions in Oxides and Fluorides[J]. J. Appl. Phys., 1993,73(1):348-366. doi: 10.1063/1.353856
Shannon R D, Oswald R A, Rossman G R. Dielectric Constants of Topaz, Orthoclase and Scapolite and the Oxide Additivity Rule[J]. Phys. Chem. Miner., 1992,19(3):166-170.
Penn S J, Alford N M, Templeton A, Wang X R, Xu M S, Reece M, Schrapel K. Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina[J]. J. Am. Ceram. Soc., 1997,80(7):1885-1888.
Chang P J, Chia C T, Lin I N, Lee J F, Lin C M, Wu K T. Characterizing x Ba(Mg1/3Ta2/3)O3+ (1-x)Ba(Mg1/3Nb2/3)O3 Microwave Ceramics Using Extended X - ray Absorption Fine Structure Method[J]. Appl. Phys. Lett., 2006,88(24):10-13.
Zhao N, Liang P F, Wu D, Chao X L, Yang Z P. Temperature Stability and Low Dielectric Loss of Lithium-Doped CdCu3Ti4O12 Ceramics for X9R Capacitor Applications[J]. Ceram. Int., 2019,45(17):22991-22997. doi: 10.1016/j.ceramint.2019.07.344
Jo H J, Kim E S. Dependence of Microwave Dielectric Properties on the Complex Substitution for Ti - Site of MgTiO3 Ceramics[J]. Ceram. Int., 2017,43:S326-S333. doi: 10.1016/j.ceramint.2017.05.302
Peng ZHOU , Xiao CAI , Qingxiang MA , Xu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047
Qiuyu Ming , Huijun Jiang , Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092
Ming ZHENG , Yixiao ZHANG , Jian YANG , Pengfei GUAN , Xiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Xiaomei Ning , Liang Zhan , Xiaosong Zhou , Jin Luo , Xunfu Zhou , Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085
Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Bing LIU , Huang ZHANG , Hongliang HAN , Changwen HU , Yinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398
Yuanpei ZHANG , Jiahong WANG , Jinming HUANG , Zhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
Baohua LÜ , Yuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Yan Liu , Yuexiang Zhu , Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
Zitong Chen , Zipei Su , Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003
Weina Wang , Fengyi Liu , Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029
x=0.00, sintered at 1 250 ℃; x=0.04, sintered at 1 200 ℃; x=0.08 and 0.12, sintered at 1 150 ℃; x=0.16, sintered at 1 000 ℃; x=0.20, sintered at 1 100 ℃
(a)x=0.00, (b) x=0.04, and (c) x=0.08, sintered at 1 200 ℃; (d) x=0.20, sintered at 1 100 ℃; (e)x=0.08, sintered at 1 150 ℃; (f) x=0.08, sintered at 1 250 ℃
x=0.00, sintered at 1 250 ℃; x=0.04, sintered at 1 200 ℃; x=0.08 and 0.12, sintered at 1 150℃; x=0.16, sintered at 1 000 ℃; x=0.20, sintered at 1 100 ℃