Citation: Xi-Zhi YANG, Fan YANG, Yuan-Ming LAI, Bao-Yang LI, Fan-Shuo WANG, Hua SU. Effect of Cu2+ Ion A-Site Substitution on Structure and Dielectric Properties of MgTiO3 Ceramics[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 599-610. doi: 10.11862/CJIC.2022.066 shu

Effect of Cu2+ Ion A-Site Substitution on Structure and Dielectric Properties of MgTiO3 Ceramics

  • Corresponding author: Yuan-Ming LAI, laiyuanming19@cdut.edu.cn
  • Received Date: 12 October 2021
    Revised Date: 10 February 2022

Figures(6)

  • Mg1 -xCux TiO3 (0.00 ≤ x ≤ 0.20) microwave ceramics were prepared by the solid - state reaction method. The effects of CuO sintering aids on the microstructure and microwave dielectric properties of MgTiO3 ceramics were investigated. It was shown that the Cu2+ ions could enter the MgTiO3 lattice and substitute Mg2+ ions forming Mg1 -xCuxTiO3 solid solution. A moderate amount of CuO can promote the densification sintering of MgTiO3 ceramics and reduce the sintering temperature due to the liquid phase. The A-site substitution of Cu2+ ions alters the distortion of the TiO6 octahedra. With the increase of Cu2+ ions content in MgTiO3 ceramics, the structural stability was weakened. With the addition of CuO content, the quality factor (Qf) of the sample decreased owing to inhomogeneous grain growth and the appearance of the liquid phase. Meanwhile, the reduction of relative density, structural stability, and average covalency of Mg1-xCu xTiO3 ceramics would deteriorate the Qf value of the sample. The dielectric constants (εr) of samples were related to the ionic polarizability, impurity phase, and TiO6 octahedra distortion. The temperature coefficients of resonant frequency (τf) decreased with the increase of TiO6 octahedra distortion. When x= 0.08, the sample could achieve densification sintering at 1 150 ℃ and the τf value was improved to -3.4×10-5-1.
  • 加载中
    1. [1]

      WANG H P, XU S Q, ZHANG Q L, YANG H. Synthesis and Microwave Dielectric Properties of CaMgSi2O6 Nanopowder Prepared at Low Temperature[J]. Chinese J. Inorg. Chem., 2007,41(12):2101-2105. doi: 10.3321/j.issn:1001-4861.2007.12.018

    2. [2]

      HUANG W Q, ZHANG Q L, YANG H, SHEN Q K. Preparation, Structure and Dielectric Properties of CaTiO3∶Zn Ceramics Based on Sol-Gel Technology[J]. Chinese J. Inorg. Chem., 2012,28(11):2379-2384.  

    3. [3]

      YAN X K, DING S H, ZHANG X H, HUANG L, ZHANG Y. Effect of Li2O-Na2O-B2O3-SiO2 Sintering Aids on Structure and Dielectric Properties of BaAl2Si2O8 Ceramics[J]. Chinese J. Inorg. Chem., 2019,35(8):1357-1362.  

    4. [4]

      Lai Y M, Su H, Wang G, Tang X L, Huang X, Liang X F, Zhang H W, Li Y X, Huang K, Wang X R. Low - Temperature Sintering of Microwave Ceramics with High Qf Values through LiF Addition[J]. J. Am. Ceram. Soc., 2019,102(4):1893-1903.

    5. [5]

      Lai Y M, Tang X L, Huang X, Zhang H W, Liang X F, Li J, Su H. Phase Composition, Crystal Structure and Microwave Dielectric Properties of Mg2-xCuxSiO4 Ceramics[J]. J. Eur. Ceram. Soc., 2018,38(4):1508-1516. doi: 10.1016/j.jeurceramsoc.2017.10.035

    6. [6]

      XIAO M, YANG Z, ZHONG X R, XI F F. Influence of Bi2O3 on the Structure and Dielectric Properties of Ag(Nb0.8Ta0.2)O3 Ceramics[J]. Chinese J. Inorg. Chem., 2014,30(3):649-653.  

    7. [7]

      He L, Yu H T, Zeng M S, Li E Z, Liu J S, Zhang S R. Phase Compositions and Microwave Dielectric Properties of MgTiO3-Based Ceramics Obtained by Reaction-Sintering Method[J]. J. Electroceram., 2018,40(4):360-364. doi: 10.1007/s10832-018-0138-x

    8. [8]

      Zhang Q L, Yang H. Low-Temperature Sintering and Microwave Dielectric Properties of MgTiO3 Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2007,18(9):967-971. doi: 10.1007/s10854-006-9090-7

    9. [9]

      Santhosh K T, Pamu D. Effect of V2O5 on Microwave Dielectric Properties of Non - stoichiometric MgTiO3 Ceramics[J]. Mater. Sci. Eng. B, 2015,194(4):86-93.

    10. [10]

      Liu S S, Chen Y B. Dielectric Properties of A Low - Loss (1-x) (Mg0.95Zn0.05)2TiO4 - x(Ca0.8Sr0.2)TiO3 Ceramic System at Microwave Frequencies[J]. J. Electroceram., 2021,3:3-8.

    11. [11]

      Rabha S, Dobbidi P. Structural, Electrical Properties and Stability in Microwave Dielectric Properties of (1-x)MgTiO3 -xSrTiO3 Composite Ceramics[J]. J. Alloys Compd., 2021,872:1-10.

    12. [12]

      Dong L, Dong G X, Li Y Y, Zhang X. Preparation and Investigation on Properties of the MgTiO3 - CaTiO3 Microwave Ceramic Materials[J]. Adv. Mater. Res., 2014,997:419-423. doi: 10.4028/www.scientific.net/AMR.997.419

    13. [13]

      Huang C L, Pan C L, Shium S J. Liquid Phase Sintering of MgTiO3 - CaTiO3 Microwave Dielectric Ceramics[J]. Mater. Chem. Phys., 2003,78(1):111-115. doi: 10.1016/S0254-0584(02)00311-5

    14. [14]

      Sohn J H, Inaguma Y, Yoon S O, Itoh M, Nakamura T, Yoon S J, Kim H. Microwave Dielectric Characteristics of Ilmenite-Type Titanates with High Q values[J]. Jpn. J. Appl. Phys., 1994,33:5466-5470. doi: 10.1143/JJAP.33.5466

    15. [15]

      Lai Y M, Zeng Y M, Han J, Liang X F, Zhong X L, Liu M Z, Duo B, Su H. Structure Dependence of Microwave Dielectric Properties in Zn2-xSiO4-x-xCuO Ceramics[J]. J. Eur. Ceram. Soc., 2021,41(4):2602-2609. doi: 10.1016/j.jeurceramsoc.2020.12.013

    16. [16]

      Li Y M, Hong W H, Xie Z X, Shen Z Y, Wang Z M. Synthesis and Microwave Dielectric Properties of Cu-Doped ZnAl2O4[J]. Int. J. Appl. Ceram. Technol., 2016,13(5):884-888. doi: 10.1111/ijac.12417

    17. [17]

      Lai Y M, Tang X L, Zhang H W, Liang X F, Huang X, Li Y X, Su H. Correlation Between Structure and Microwave Dielectric Properties of Low - Temperature - Fired Mg2SiO4 Ceramics[J]. Mater. Res. Bull., 2018,99:496-502. doi: 10.1016/j.materresbull.2017.11.036

    18. [18]

      Lai Y M, Su H, Wang G, Tang X L, Liang X F H X, Li Y X, Zhang W H, Ye C, Wang X R. Improved Microwave Dielectric Properties of CaMgSi2O6 Ceramics through CuO Doping[J]. J. Alloys Compd., 2019,772:40-48. doi: 10.1016/j.jallcom.2018.09.059

    19. [19]

      Rodríguez-Carvajal J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction[J]. Physica B, 1993,192:55-69. doi: 10.1016/0921-4526(93)90108-I

    20. [20]

      Liu X C, Hong R Z, Tian C S. Tolerance Factor and the Stability Discussion of ABO3 - Type Ilmenite[J]. J. Mater. Sci.: Mater. Electron., 2009,20(4):323-327. doi: 10.1007/s10854-008-9728-8

    21. [21]

      Pauling L. The Nature Of the Chemical Bond. Ⅳ. The Energy of Single Bonds and the Relative Electronegativity of Atoms[J]. J. Am. Chem. Soc., 1932,54(9):3570-3582. doi: 10.1021/ja01348a011

    22. [22]

      Hameed I, Wu S Y, Li L, Liu X Q, Chen X M. Structure and Microwave Dielectric Characteristics of Sr2[Ti1-x(Al0.5Nb0.5)x]O4 (x≤0.50) Ceramics[J]. J. Am. Ceram. Soc., 2019,102(70):6137-6146.

    23. [23]

      Yue T, Li L, Du M, Zhan Y. Multilayer Co -fired Microwave Dielectric Ceramics in MgTiO3 - Li2TiO3 System with Linear Temperature Coefficient of Resonant Frequency[J]. Scr. Mater., 2021,205:1-5.

    24. [24]

      Singh J, Bahel S. Structural, Vibrational, Optical, Dielectric, and Shielding Sharacteristics of (1-x)Mg(Ti0.95Sn0.05)O3 - (x)SrTiO3 (0 ≤ x ≤ 0.1) Ceramics[J]. Mater. Res. Bull., 2021,139:1-13.

    25. [25]

      Yu Y, Wang Y J, Guo W J, Zhu C Q, Ji A, Wu H, Liang S J, Xiong S, Wang X H. Grain Size Engineered 0.95MgTiO3 -0.05CaTiO3 Ceramics with Excellent Microwave Dielectric Properties and Prominent Mechanical Performance[J]. J. Am. Ceram. Soc., 2021,105(1):299-307.

    26. [26]

      Wang M J, Yan D. Improved Crystalline Structure and Sintering Characteristics of Nonstoichiometric MgTiO3 Ceramics by Sol - Gel Method[J]. J. Sol-Gel Sci. Technol., 2021,97(2):365-372. doi: 10.1007/s10971-020-05458-x

    27. [27]

      Sharma K, Bahel S. Structural, Dielectric and Reflection Analysis of ZnxMg1-xTiO3 Ceramics Synthesized Using Auto - Ignition Combustion Method[J]. J. Mater. Sci.: Mater. Electron., 2021,32(23):27216-27231. doi: 10.1007/s10854-021-07088-7

    28. [28]

      Fang Z X, Yang H Y, Yang H C, Xiong Z, Zhang X, Zhao P, Tang B. Ilmenite-Type MgTiO3 Ceramics by Complex (Mn1/2W1/2)4+ Cation Cosubstitution Producing Improved Microwave Characteristics[J]. Ceram. Int., 2021,47(15):21388-21397. doi: 10.1016/j.ceramint.2021.04.148

    29. [29]

      Jia X B, Xu Y, Zhao P, Li L H, Li W. Structural Dependence of Microwave Dielectric Properties in Ilmenite - Type Mg(Ti1-xNbx)O3 Solid Solutions by Rietveld Refinement and Raman Spectra[J]. Ceram. Int., 2021,47(4):4820-4830. doi: 10.1016/j.ceramint.2020.10.052

    30. [30]

      Chen C Y, Peng Z J, Xie L Z, Bi K, Fu X L. Microwave Dielectric Properties of Novel (1-x)MgTiO3-xCa0.5Sr0.5TiO3 Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2020,31(16):13696-13703. doi: 10.1007/s10854-020-03927-1

    31. [31]

      Chen C Y, Peng Z J, Xie L Z, Bi K, Fu X L. Effects of Adding B2O3 on Microwave Dielectric Properties of 0.962 5MgTiO3-0.037 5(Ca0.5Sr0.5) TiO3 Composite Ceramics[J]. Int. J. Appl. Ceram. Technol., 2020,17(6):2545-2552. doi: 10.1111/ijac.13582

    32. [32]

      Xu Z P, Li L X, Yu S H, Du M K, Luo W J. Microstructure and Microwave Dielectric Characteristics of Magnesium Fluoride Additive to MgTiO3-(Ca0.8Sr0.2)TiO3 Ceramics[J]. Mater. Lett., 2019,252:191-193. doi: 10.1016/j.matlet.2019.05.136

    33. [33]

      Singh J, Bahel S. Structural and Dielectric Properties of (BaxMg1-x) (Ti0.95Sn0.05)O3 (x=0.025, 0.05, 0.075 and 0.1) Solid Solutions[J]. J. Mater. Sci.: Mater. Electron., 2019,30(7):6500-6506. doi: 10.1007/s10854-019-00955-4

    34. [34]

      Xu Z P, Li L X, Yu S H, Du M K, Luo W J. Magnesium Fluoride Doped MgTiO3 Ceramics with Ultra-High Q Value at Microwave Frequencies[J]. J. Alloys Compd., 2019,802:1-5. doi: 10.1016/j.jallcom.2019.06.207

    35. [35]

      Yu H T, Luo T, He L, Liu J S. Effect of ZnO on Mg2TiO4-MgTiO3 - CaTiO3 Microwave Dielectric Ceramics Prepared by Reaction Sintering Route[J]. Adv. Appl. Ceram., 2019,118(2):98-105.

    36. [36]

      Xin M, Zhang L M, Chang Y, Xia Y S, Ren L C, Luo X F, Zhou H Q. Influence of Sb2O3 - ZnO Additives on Sintering Characteristics and Dielectric Properties of (Mg0.95Ca0.05)TiO3 Microwave Ceramics[J]. Ceram. Int., 2018,44(14):17107-17112. doi: 10.1016/j.ceramint.2018.06.162

    37. [37]

      Yuan S F, Gan L, Ning F F, An S B, Jiang J, Zhang T J. High-Q×f 0.95MgTiO3 - 0.05CaTiO3 Microwave Dielectric Ceramics with the Addition of LiF Sintered at Medium Temperatures[J]. Ceram. Int., 2018,44(16):20566-20569. doi: 10.1016/j.ceramint.2018.07.202

    38. [38]

      Tang B, Xue L X, Li H, Lu J W, Li F H, Zhang S R. Effects of Li2ZnTi3O8 Addition on Sintering Behavior and Microwave Dielectric Properties of the MgTiO3-CaTiO3 Ceramic System[J]. J. Mater. Sci.: Mater. Electron., 2018,29(5):3836-3839. doi: 10.1007/s10854-017-8319-y

    39. [39]

      Xia Y, Yuan S F, An S B, Jiang J, Gan L, Zhang T J. Microwave Dielectric Properties of the (1-x) (Mg0.97Zn0.03) (Ti0.97Sn0.03)O3 - x (Ca0.8Na0.1Sm0.1)TiO3 Ceramic System[J]. J. Mater. Sci.: Mater. Electron., 2018,29(21):18791-18796. doi: 10.1007/s10854-018-0004-2

    40. [40]

      Manan A, Ullah Z, Ahmad A S, Ullah A, Khan D F, Hussain A, Khan M U. Phase Microstructure Evaluation and Microwave Dielectric Properties of (1-x)Mg0.95Ni0.05Ti0.98Zr0.02O3 - xCa0.6La0.8/3TiO3 Ceramics[J]. J. Adv. Ceram., 2018,7(1):72-78. doi: 10.1007/s40145-018-0258-4

    41. [41]

      Liu J, Zhong C W, Tao Y, Chen S, Zhang S R. Microwave Dielectric Characteristics of NdAlO3 - Doped 0.95MgTiO3 -0.05CaTiO3, Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2017,28(1):909-914. doi: 10.1007/s10854-016-5606-y

    42. [42]

      Lin S H, Chen Y B. Low Dielectric Loss Characteristics of[(Mg1-xZnx)0.95Co0.05]1.02TiO3.02 Ceramics at Microwave Frequencies[J]. J. Mater. Sci. Mater.: Electron., 2017,28(5):4154-4160. doi: 10.1007/s10854-016-6035-7

    43. [43]

      Wang K G, Zhou H S, Sun W D, Chen X L, Ruan H. Solid - State Reaction Mechanism and Microwave Dielectric Properties of 0.95MgTiO3 - 0.05CaTiO3 Ceramics[J]. J. Mater. Sci.: Mater. Electron., 2018,29(3):2001-2006. doi: 10.1007/s10854-017-8111-z

    44. [44]

      Liu S, Wang J, Pei X Y, Dai X G, Li Y, Chen J B, Wang C W. The Reversible Wetting Transition Between Superhydrophilicity and Superhydrophobicity of Tremella - like CuxO@CuxS Nanosheets Prepared by One-Step Anodization and the Application of On-Demand Oil/Water Separation[J]. J. Alloys Compd., 2021,889:1-12.

    45. [45]

      Wang F S, Lai Y M, Zeng Y M, Yang F, Li B Y, Yang X Z, Su H, Han J, Zhong X L. Enhanced Microwave Dielectric Properties in Mg2Al4Si5O18 through Cu2+ Substitution[J]. Eur. J. Inorg. Chem., 2021,2021(25):2464-2470. doi: 10.1002/ejic.202100174

    46. [46]

      Xiong Z, Yang C T, Tang B, Fang Z X, Chen H T, Zhang S R. Structure-Property Relationships of Perovskite-Structured Ca0.61Nd0.26Ti1-x(Cr0.5Nb0.5)xO3 ceramics[J]. Ceram. Int., 2018,44(7):7384-7392. doi: 10.1016/j.ceramint.2017.12.186

    47. [47]

      Ullah B, Lei W, Wang X H, Fan G F, Wang X C, Lu W Z. Dielectric and Ferroelectric Behavior of an Incipient Ferroelectric Sr(1- 3x/2)CexTiO3 Novel Solid Solution[J]. RSC Adv., 2016,6(94):91679-91688. doi: 10.1039/C6RA18717J

    48. [48]

      Lai Y M, Hong C Y, Jin L C, Tang X L, Zhang H W, Huang X, Li J, Su H. Temperature Stability and High-Qf of Low Temperature Firing Mg2SiO4-Li2TiO3 Microwave Dielectric Ceramics[J]. Ceram. Int., 2017,43(18):16167-16173. doi: 10.1016/j.ceramint.2017.08.192

    49. [49]

      Yang Y, Ma M S, Zhang F Q, Liu F, Chen G Y, Liu Z F, Li Y X. Low-Temperature Sintering of Al2O3 Ceramics Doped with 4CuO - TiO2 - 2Nb2O5 Composite Oxide Sintering Aid[J]. J. Eur. Ceram. Soc., 2020,40(15):5504-5510. doi: 10.1016/j.jeurceramsoc.2020.06.068

    50. [50]

      Zhang Q, Tang X L, Huang F X, Wu X H, Li Y X, Su H. Enhanced Microwave Dielectric Properties of Wolframite Structured Zn1-xCuxWO4 Ceramics with Low Sintering Temperature[J]. J. Materiomics, 2021,7(6):1309-1317. doi: 10.1016/j.jmat.2021.02.011

    51. [51]

      Brown I D, Shannon R D. Empirical Bond - Strength - Bond - Length Curves for Oxides[J]. Acta Crystallogr. Sect. A: Found. Crystallogr., 1973,29(3):266-282.

    52. [52]

      Brown I D, Wu K K. Empirical Parameters for Calculating Cation - Oxygen Bond Valences[J]. Acta Crystallogr. Sect. B: Struct. Sci., 1976,32(7):1957-1959. doi: 10.1107/S0567740876006869

    53. [53]

      Jo H J, Kim E S. Effects of Structural Characteristics on Microwave Dielectric Properties of MgTi1-x(Mg1/3B2/3)xO3 (B=Nb, Ta)[J]. J. Eur. Ceram. Soc., 2016,36(6):1399-1405. doi: 10.1016/j.jeurceramsoc.2015.12.033

    54. [54]

      Jo J H, Kim S G, Kim E S. Microwave Dielectric Properties of MgTiO3-Based Ceramics[J]. Ceram. Int., 2015,41(S1):S530-S536.

    55. [55]

      Wang G, Zhang D N, Li J, Gan G W, Rao Y H, Huang X, Yang Y, Shi L, Liao Y L, Liu C, Jin L C, Zhang H W. Crystal Structure, Bond Energy, Raman Spectra, and Microwave Dielectric Properties of Ti-Doped Li3Mg2NbO6 Ceramics[J]. J. Am. Ceram. Soc., 2020,103(8):4321-4332. doi: 10.1111/jace.17091

    56. [56]

      Surendran K P, Santha N, Mohanan P, Sebastian M T. Temperature Stable Low Loss Ceramic Dielectrics in (1-x)ZnAl2O4-xTiO2 System for Microwave Substrate Applications[J]. Eur. Phys. J. B, 2004,41(3):301-306. doi: 10.1140/epjb/e2004-00321-8

    57. [57]

      Shannon R D. Dielectric Polarizabilities of Ions in Oxides and Fluorides[J]. J. Appl. Phys., 1993,73(1):348-366. doi: 10.1063/1.353856

    58. [58]

      Shannon R D, Oswald R A, Rossman G R. Dielectric Constants of Topaz, Orthoclase and Scapolite and the Oxide Additivity Rule[J]. Phys. Chem. Miner., 1992,19(3):166-170.

    59. [59]

      Penn S J, Alford N M, Templeton A, Wang X R, Xu M S, Reece M, Schrapel K. Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina[J]. J. Am. Ceram. Soc., 1997,80(7):1885-1888.

    60. [60]

      Chang P J, Chia C T, Lin I N, Lee J F, Lin C M, Wu K T. Characterizing x Ba(Mg1/3Ta2/3)O3+ (1-x)Ba(Mg1/3Nb2/3)O3 Microwave Ceramics Using Extended X - ray Absorption Fine Structure Method[J]. Appl. Phys. Lett., 2006,88(24):10-13.

    61. [61]

      Zhao N, Liang P F, Wu D, Chao X L, Yang Z P. Temperature Stability and Low Dielectric Loss of Lithium-Doped CdCu3Ti4O12 Ceramics for X9R Capacitor Applications[J]. Ceram. Int., 2019,45(17):22991-22997. doi: 10.1016/j.ceramint.2019.07.344

    62. [62]

      Jo H J, Kim E S. Dependence of Microwave Dielectric Properties on the Complex Substitution for Ti - Site of MgTiO3 Ceramics[J]. Ceram. Int., 2017,43:S326-S333. doi: 10.1016/j.ceramint.2017.05.302

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    3. [3]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    8. [8]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    15. [15]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    16. [16]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

    20. [20]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

Metrics
  • PDF Downloads(8)
  • Abstract views(3895)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return