Citation: Oladeji S. Olatunde, Ikhile I. Monisola, Mamo Messai, Ndungu G. Patrick, Ndinteh T. Derek. Synthesis, Characterization and Antimicrobial Screening of Various Ferrocenyl Schiff Bases against Gram-positive and Gram-negative Bacteria[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 705-715. doi: 10.11862/CJIC.2022.065 shu

Synthesis, Characterization and Antimicrobial Screening of Various Ferrocenyl Schiff Bases against Gram-positive and Gram-negative Bacteria

Figures(4)

  • Ten ferrocenyl Schiff bases 1-10 were synthesized and characterized using UV-Vis spectroscopy, FT-IR, elemental analysis, 1H and 13C NMR spectroscopy. The synthesized compounds were evaluated against 11 bacteria strains (Bacillus subtilis ATCC19659, Klebsiella aerogenes ATCC13882, Enterococcus faecalis ATCC13047, Myco- bacterium smegmatis MC2155, Staphylococcus epidermidis ATCC14990, Staphylococcus aureus ATCC25923, Esche-richia coli ATCC25922, Enterobacter cloacae ATCC13047, Klebsiella oxytoca ATCC8724, Proteus mirabilis ATCC7002, Proteus vulgaris ATCC6380). The results obtained from antibacterial assay indicated that the synthe- sized Schiff bases 1-10 inhibited potential growth of Klebsiella aerogenes with the minimum inhibitory concentration (MIC) ranging from 15.6 to 31.25 μg·mL-1 and Enterococcus faecalis with MIC the range between 31.25 and 125 μg· mL-1 in comparison with the standard nalidixic acid and streptomycin sulfate.
  • 加载中
    1. [1]

      Kealy T, Pauson P. A New Type of Organo-iron Compound[J]. Nature, 1951,168:1039-1040.

    2. [2]

      Miller S A, Tebboth J A, Tremaine J F. Dicyclopentadienyliron[J]. J. Chem. Soc., 1952:632-635. doi: 10.1039/jr9520000632

    3. [3]

      Wilkinson G, Rosenblum M, Whiting M, Woodward R B. The Structure of Iron Bis-cyclopentadienyl[J]. J. Am. Chem. Soc., 1952,74:2125-2126. doi: 10.1021/ja01128a527

    4. [4]

      Dunitz J, Orgel L. Bis-cyclo Pentadienyl Iron: A Molecular Sandwich[J]. Nature, 1953,168:121-122.

    5. [5]

      Eric M N, Bernard O, Vincent O. Synthesis, Physical and Antimicrobial Studies of Ferrocenyl-N-(pyridinylmethylene)anilines and Ferrocenyl-N-(pyridinylmethyl)anilines[J]. S. Afr. J. Chem., 2016,69:51-66.

    6. [6]

      Werner H. At Least 60 Years of Ferrocene: The Discovery and Rediscovery of the Sandwich Complexes[J]. Angew. Chem. Int. Ed., 2012,51:6052-6058. doi: 10.1002/anie.201201598

    7. [7]

      Van Staveren D R, Metzler-Nolte N. Bioorganometallic Chemistry of Ferrocene[J]. Chem. Rev., 2004,104:5931-5985. doi: 10.1021/cr0101510

    8. [8]

      Eiland P F, Pepinsky R. X-ray Examination of Iron Biscyclopentadienyl[J]. J. Am. Chem. Soc., 1952,744971.

    9. [9]

      Togni A. Ferrocene-Cotaining Charge-Transfer Complexes. Conducting and Magnetic Materials//Togni A, Hayashi T[J]. Ferrocenes: Homogeneous Catalysis, Organic Synthesis, Materials Science. New York: John Wiley & Sons, 2008:433-469.

    10. [10]

      Yang H, Chen X, Jiang W, Lu Y. Convenient Synthesis of New Water-Soluble Monosubstituted Functional Ferrocene Derivatives[J]. Inorg. Chem. Commun., 2005,8:853-857. doi: 10.1016/j.inoche.2005.05.025

    11. [11]

      Verma S K, Singh V K. Synthesis and Characterization of ferrocene Functionalized Transition Metal Dithiocarbamate Complexes: Investigations of Antimicrobial, Electrochemical Properties and a New Polymorphic Form of[Cu{κ2S, S-S2CN(CH2C 4H3O)CH2Fc}2][J]. J. Org. Chem., 2015,719:214-224.

    12. [12]

      Jaouen G, Top S, Vessieres A, Leclercq G, McGlinchey M J. The First Organometallic Selective Estrogen Receptor Modulators (SERMs) and Their Relevance to Breast Cancer[J]. Curr. Med. Chem., 2004,11:2505-2517. doi: 10.2174/0929867043364487

    13. [13]

      Ornelas C. Application of Ferrocene and Its Derivatives in Cancer Research[J]. New J. Chem., 2011,35:1973-1985. doi: 10.1039/c1nj20172g

    14. [14]

      Hegazy W H. Synthesis of Organometallic-Based Biologically Active Compounds: In Vitro Antibacterial and Antifungal of Asymmetric Ferrocene-Derived Schiff-Bases Chelates[J]. Int. Res. J. Pure Appl. Chem., 2012,2(3):170-182. doi: 10.9734/IRJPAC/2012/1627

    15. [15]

      Mziyanda M, Dingle L M K, Devon C, Jo-Anne D M, Dustin L, Dale T, Heinrich C H, Adrienne L E, Setshaba D K. Repurposing a Polymer Precursor: Synthesis and In Vitro Medicinal Potential of Ferrocenyl 1, 3-Benzoxazine Derivatives[J]. Eur. J. Med. Chem., 2020,187111924. doi: 10.1016/j.ejmech.2019.111924

    16. [16]

      Calhorda M J, Costa P J, Martinho P N, Gimeno M C, Aguna A, Quintal S, Villacampa M D. Synthesis and Ligand Properties towards Gold and Silver of the Ferrocenylamidobenzimidazole Ligand[J]. J. Org. Chem., 2006,691:4181-4188. doi: 10.1016/j.jorganchem.2006.06.025

    17. [17]

      Quintal S, Gimeno M C, Laguna A, Calhorda M J. Silver and Copper Complexes with Ferrocenyl Ligands Bearing Imidazole or Pyridyl Substituents[J]. J. Org. Chem., 2010,695:558-566. doi: 10.1016/j.jorganchem.2009.11.013

    18. [18]

      Rajput J, Moss J R, Hutton A T, Hendricks D T, Catherine E A Christopher I. Synthesis, Characterization and Cytotoxicity of Some Palladium, Platinum, Rhodium and Iridium Complexes of Ferrocenylpyridine and Related Ligands: Crystal and Molecular Structure of trans-Dichlorobis(3-ferrocenylpyridine)palladium[J]. J. Org. Chem., 2004,689:1553-1568. doi: 10.1016/j.jorganchem.2004.01.034

    19. [19]

      Neuse E W. Macromolecular Ferrocene Compounds as Cancer Drug Models[J]. J. Inorg. Org. Polym. Mater., 2005,15:3-31. doi: 10.1007/s10904-004-2371-9

    20. [20]

      Mohammad F R F, Mokhles M A, Rafeek A A, Ammar A L. On the Medicinal Chemistry of Ferrocene[J]. Appl. Org. Chem., 2007,21:613-625. doi: 10.1002/aoc.1202

    21. [21]

      Biot C, François N, Maciejewski L, Brocard J, Poulain D. Synthesis and Antifungal Activity of a Ferrocene-Fluconazole Analogue[J]. Bioorg. Med. Chem. Lett., 2000,10:839-841. doi: 10.1016/S0960-894X(00)00120-7

    22. [22]

      Seshadri T. Novel Ferrocene-Based Chiral Schiff Base Derivative with a Twist-Grain Boundary Phase (TGBA) and a Blue Phase[J]. Chem. Commun., 1998:735-736.

    23. [23]

      Driver M S, Hartwig J F. A Second-Generation Catalyst for Aryl Halide Amination: Mixed Secondary Amines from Aryl Halides and Primary Amines Catalyzed by (DPPF)PdCl2[J]. J. Am. Chem. Soc., 1996,118:7217-7218. doi: 10.1021/ja960937t

    24. [24]

      Bruno S M, Gomes A C, Coelho A C, Brandao P, Valente A A, Pillinger M, Concalves I S. Catalytic Isomerisation of α-Pinene Oxide in the Presence of ETS-10 supported Ferrocenium Ions[J]. J. Org. Chem., 2015,791:66-71. doi: 10.1016/j.jorganchem.2015.05.026

    25. [25]

      Siangwata S, Baartzes N, Makhubela B C, Smith J S. Synthesis, Characterisation and Reactivity of Water-Soluble Ferrocenylimine-Rh Complexes as Aqueous-Biphasic Hydroformylation Catalyst Precursors[J]. J. Org. Chem., 2015,796:26-32. doi: 10.1016/j.jorganchem.2015.04.029

    26. [26]

      Sakanishi S, Bardwell D A, Couchman S, Jeffery J C, McCleverty J A, Michael D W. Donor/Acceptor Complexes Containing Ferrocenyl-Pyridine Ligands Attached to a Tungsten Carbonyl Centre: Structural, Spectroscopic and Electrochemical Properties[J]. J. Org. Chem., 1997,528:35-45. doi: 10.1016/S0022-328X(96)06395-4

    27. [27]

      Casas-Solvas J M, Ortiz-Salmerón E, Fernández I, Garcia-Fuentes L, Santoyo-Gonzlez F, Vargas-Berenguel A. Ferrocene-β-Cyclodextrin Conjugates: Synthesis, Supramolecular Behavior, and Use as Electrochemical Sensors[J]. Chem. Eur. J., 2009,15:8146-8162. doi: 10.1002/chem.200900593

    28. [28]

      Rajput J, Hutton A T, Moss J R, Su H, Imrie C. Ferrocenyl-Nitrogen Donor Ligands. Synthesis and Characterization of Rhodium Complexes of Ferrocenylpyridine and Related Ligands[J]. J. Org. Chem., 2006,691:4573-4588. doi: 10.1016/j.jorganchem.2006.05.048

    29. [29]

      Park S, Mathur V K, Planap R P. Syntheses, Solubilities and Oxygen Absorption Properties of New Cobalt Schiff-Base Complexes[J]. Polyhedron, 1998,17:325-330. doi: 10.1016/S0277-5387(97)00308-2

    30. [30]

      Imrie C, Engelbrecht P, Loubser C, McCleland C W, Nyamori V O, Bogardi R, Levendis D C, Tolom N, Rooyen J V, Williams N. Synthesis of ferrocenylphenyl Derivatives Including Biphenylferrocenes, Arylferrocenylphenyl Ethers and Arylferrocenylphenyl Amines[J]. J. Org. Chem., 2002,645:65-81. doi: 10.1016/S0022-328X(01)01410-3

    31. [31]

      Landy L F. The Chemistry of Macrocyclic Ligand Complexes. Cambridge: Cambridge University Press, 1989.

    32. [32]

      Choi Y K, Kim W S, Chung K I, Chung M W, Nam H P. Catalytic Effect of Transition Metal-N, N'-Bis(naphthaldehyde)diimines on Reduction of Thionyl Chloride[J]. Microchem. J., 2000,65:3-15. doi: 10.1016/S0026-265X(00)00011-4

    33. [33]

      Chohan Z H, Praveen M. Synthesis, Characterization, Coordination and Antibacterial Properties of Novel Asymmetric 1, 1'-Disubstituted Ferrocene-Derived Schiff-Base Ligands and Their Co, Cu, Ni and Zn Complexes[J]. Appl. Org. Chem., 2001,15:617-625. doi: 10.1002/aoc.179

    34. [34]

      Gupta K, Sutar A K. Catalytic Activities of Schiff Base Transition Metal Complexes[J]. Coord. Chem. Rev., 2008,252:1420-1450. doi: 10.1016/j.ccr.2007.09.005

    35. [35]

      Asghari G, Zareen A, Muhammad S, Sehrish S, Bushra M. Ferrocene-Based Aliphatic and Aromatic Poly(azomethine) Esters: Synthesis, Physicochemical Studies, and Biological Evaluation[J]. Macromolecules, 2013,46:2800-2807. doi: 10.1021/ma400192u

    36. [36]

      Rajavel R, Vadivu M S, Anitha C. Synthesis, Physical Characterization and Biological Activity of Some Schiff Base Complexes[J]. Eur. J. Chem., 2008,5:620-626.

    37. [37]

      Muhammad S, Zareen A, Iqbal A, Safeer A, Michael B, Hammad I, Bushra M. Ferrocene-Based Schiff Bases Copper Complexes: Synthesis, Characterization, Biological and Electrochemical Analysis[J]. Inorg. Chim. Acta, 2017,463:102-111. doi: 10.1016/j.ica.2017.04.034

    38. [38]

      Thomson A J, Gray H B. Bio-inorganic Chemistry[J]. Curr. Opin. Chem. Biol., 1998,2(2):155-158. doi: 10.1016/S1367-5931(98)80056-2

    39. [39]

      Saravanan V, Kannan A, Rajakumar P. Synthesis, Characterization, Optical and Electrochemical Properties and Antifungal and Anticancer Activities of Ferrocenyl Conjugated Novel Dendrimers[J]. New J. Chem., 2017,41:1714-1722. doi: 10.1039/C6NJ01120A

    40. [40]

      Hodnett M, Mooney P D. Structure-Antitumor Activity Correlation of Some Schiff Bases[J]. J. Med. Chem., 1970,13:768-770. doi: 10.1021/jm00298a054

    41. [41]

      Veronika K, Aleksandar V, Vladimir R, Kojić-Prodić B. Ferrocene Compounds. XL. Synthesis and Characterization of Ferrocene Schiff Bases[J]. J. Mol. Struct., 2004,687:107-110. doi: 10.1016/j.molstruc.2003.09.014

    42. [42]

      Ikhile M I, Ngila J C. Synthesis and Characterization of Some Ferrocenylphenylimine Compound[J]. Chinese J. Inorg. Chem., 2015,31(10):2079-2088.  

    43. [43]

      Andrews J M. Determination of Minimum Inhibitory Concentrations[J]. J. Antimicrob. Chemother., 2001,48:5-16. doi: 10.1093/jac/48.suppl_1.5

    44. [44]

      Dalhoff A. In Vitro Activities of Quinolones. Expert Opin[J]. Investig. Drugs, 1999,8:123-137.

    45. [45]

      Muhammad Z, Afzal S, Zareen A, Rumana Q, Bushra M, Misbah T, Michael B. Synthesis, Characterization, Electrochemistry and Evaluation of Biological Activities of Some Ferrocenyl Schiff Bases[J]. Appl. Org. Chem., 2011,25:61-69. doi: 10.1002/aoc.1690

    46. [46]

      Liu Y T, Yang L S, Yin D W, Dang Y, Yang L, Zou Q, Li J, Sun J X. Solvent-Free Synthesis, Characterization, Biological Activity of Schiff Bases and their Metal Complexes Derived from Ferrocenyl Chalcone[J]. J. Org. Chem., 2019,899120903. doi: 10.1016/j.jorganchem.2019.120903

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Xingyu ChenSihui ZhuangWeiyao YanZhengli ZengJianguo FengHongen CaoLei Yu . Synthesis, antibacterial evaluation, and safety assessment of Se@PLA as a potent bactericide against Xanthomonas oryzae pv. oryzae. Chinese Chemical Letters, 2024, 35(10): 109635-. doi: 10.1016/j.cclet.2024.109635

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    5. [5]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    8. [8]

      Yuanyi ZhouKe MaJinfeng LiuZirun ZhengBo HuYu MengZhizhong LiMingshan Zhu . Is reactive oxygen species the only way for cancer inhibition over single atom nanomedicine? Autophagy regulation also works. Chinese Chemical Letters, 2024, 35(6): 109056-. doi: 10.1016/j.cclet.2023.109056

    9. [9]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    10. [10]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    11. [11]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    12. [12]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    13. [13]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    14. [14]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    15. [15]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    16. [16]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    17. [17]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    18. [18]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    19. [19]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    20. [20]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

Metrics
  • PDF Downloads(2)
  • Abstract views(383)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return