Citation: Ming-Xing ZHANG, Pei-Pei ZHANG, Su WANG, Guo-Min JIANG, Hui-Hui CUI, Yan-Feng TANG. PCN-Type Metal-Organic Framework Based on Amide-Inserted Helical Ligand and Supramolecular Building Blocks: Structure and CO2 Selective Adsorption[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 423-429. doi: 10.11862/CJIC.2022.061 shu

PCN-Type Metal-Organic Framework Based on Amide-Inserted Helical Ligand and Supramolecular Building Blocks: Structure and CO2 Selective Adsorption

Figures(3)

  • A small rhombohedral supramolecular building block (SBB) with a narrowed window was linked with amide-functionalized helical ligand 5, 5'-(((1, 1'-biphenyl)-2, 2'-dicarbonyl)bis(azanediyl))diisophthalic acid (H4L) for the first time, and a microporous metal-organic framework (MOF) [Cu2(L)(H2O)2]·DMF·6H2O (NTUniv-53) with pcu topology was formed. The synthesized NTUniv-53 showed a noticeable CO2 selective adsorption at room tempera-ture, which was insensitive to temperature change due to the narrowed windows and amide groups.
  • 加载中
    1. [1]

      Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. The Chemistry and Applications of Metal-Organic Frameworks[J]. Science, 2013,3411230444. doi: 10.1126/science.1230444

    2. [2]

      Zheng B S, Bai J F, Duan J G, Wojtas L, Zaworotko M J. Enhanced CO2 Binding Affinity of a High-Uptake rht-Type Metal-Organic Framework Decorated with Acylamide Groups[J]. J. Am. Chem. Soc., 2011,133:748-751. doi: 10.1021/ja110042b

    3. [3]

      Song X H, Zhang M X, Chen C, Duan J G, Zhang W W, Pan Y, Bai J F. Pure-Supramolecular-Linker Approach to Highly Connected Metal-Organic Frameworks for CO2 Capture[J]. J. Am. Chem. Soc., 2019,141:14539-14543. doi: 10.1021/jacs.9b07422

    4. [4]

      Zhou Y, Yu F, Su J, Kurmoo M, Zuo J L. Tuning Electrical-and Photo-Conductivity by Cation Exchange within a Redox-Active Tetrathiaful-valene-Based Metal-Organic Framework[J]. Angew. Chem. Int. Ed., 2020,59:18763-18767. doi: 10.1002/anie.202008941

    5. [5]

      Su J, Xu N, Murase R, Yang Z M, D'Alessandro D M, Zuo J L, Zhu J. Persistent Radical Tetrathiafulvalene-Based 2D Metal-Organic Frameworks and Their Application in Efficient Photothermal Conversion[J]. Angew. Chem. Int. Ed., 2021,60:4789-4795. doi: 10.1002/anie.202013811

    6. [6]

      Yuan S, Huang L, Huang Z H, Sun D F, Qin J S, Feng L, Li J L, Zou X D, Cagin T, Zhou H C. Continuous Variation of Lattice Dimensions and Pore Sizes in Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2020,142:4732-4738. doi: 10.1021/jacs.9b13072

    7. [7]

      Guo X Q, Wang M, Meng F, Tang Y F, Tian S, Yang H L, Jiang G Q, Zhu J L. Rational Design and Synthesis of an Amino-Functionalized Hydrogen-Bonded Network with an ACO Zeolite-like Topology for Gas Storage[J]. CrystEngComm, 2016,18:5616-5619. doi: 10.1039/C6CE01164K

    8. [8]

      Chen S S, Chen M, Takamizawa S, Chen M S, Su Z, Sun W Y. Temperature Dependent Selective Gas Sorption of the Microporous Metal-Imidazolate Framework [Cu(L)] [H2L=1, 4-Di(1H-imidazol-4-yl) benzene][J]. Chem. Commun., 2011,47:752-754. doi: 10.1039/C0CC04085A

    9. [9]

      Gao Y J, Zhang M X, Chen C, Zhang Y, Gu Y M, Wang Q, Zhang W W, Pan Y, Ma J, Bai J F. A Low Symmetry Cluster Meets a Low Symmetry Ligand to Sharply Boost MOF Thermal Stability[J]. Chem. Commun., 2020,56:11985-11988. doi: 10.1039/D0CC04543H

    10. [10]

      Dong J, Zhao D, Lu Y, Sun W Y. Photoluminescent Metal-Organic Frameworks and Their Application for Sensing Biomolecules[J]. J. Mater. Chem. A, 2019,7:22744-22767. doi: 10.1039/C9TA07022B

    11. [11]

      Jiang Z Z, Zou Y, Xu T T, Fan L H, Zhou P, He Y B. A Hydrostable Cage-Based MOF with Open Metal Sites and Lewis Basic Sites Immobilized in the Pore Surface for Efficient Separation and Purification of Natural Gas and C2H2[J]. Dalton Trans., 2020,49:3553-3561. doi: 10.1039/D0DT00402B

    12. [12]

      Xu T T, Fan L, Jiang Z Z, Zhou P, Li Z R, Lu H Y, He Y B. Immobilization of N-Oxide Functionality into Nbo-Type MOFs for Significantly Enhanced C2H2/CH4 and CO2/CH4 Separations[J]. Dalton Trans., 2020,49:7174-7181. doi: 10.1039/D0DT01081B

    13. [13]

      Xu T T, Jiang Z Z, Liu P X, Chen H N, Lan X S, Chen D L, Li L B, He Y B. Immobilization of Oxygen Atoms in the Pores of Microporous Metal-Organic Frameworks for C2H2 Separation and Purification[J]. ACS Appl. Nano Mater., 2020,3:2911-2919. doi: 10.1021/acsanm.0c00162

    14. [14]

      Liu L Z, Sun J T, Ding J D, Zhang Y, Jia J P, Sun T H. Catalytic Oxidation of VOCs over SmMnO3 Perovskites: Catalyst Synthesis, Change Mechanism of Active Species, and Degradation Path of Toluene[J]. Inorg. Chem., 2019,58:14275-14283. doi: 10.1021/acs.inorgchem.9b02518

    15. [15]

      Ding J J, Liu X, Wang M, Liu Q, Sun T M, Jiang G Q, Tang Y F. Controlled Synthesis of CeVO4 Hierarchical Hollow Microspheres with Tunable Hollowness and Their Efficient Photocatalytic Activity[J]. CrystEngComm, 2018,20:4499-4505. doi: 10.1039/C8CE00695D

    16. [16]

      Yun R R, Zhang B B, Qiu C, Ma Z W, Zhan F Y, Sheng T, Zheng B S. Encapsulating Cobalt into N-Doping Hollow Frameworks for Efficient Cascade Catalysis[J]. Inorg. Chem., 2021,60:9757-9761. doi: 10.1021/acs.inorgchem.1c01063

    17. [17]

      Yun R R, Zhan F Y, Wang X J, Zhang B B, Sheng T, Xin Z F, Mao J J, Liu S J, Zheng B S. Design of Binary Cu-Fe Sites Coordinated with Nitrogen Dispersed in the Porous Carbon for Synergistic CO2 Electroreduction[J]. Small, 2021,172006951. doi: 10.1002/smll.202006951

    18. [18]

      Yun R R, Zhan F Y, Li N, Zhang B B, Ma W J, Hong L R, Sheng T, Du L T, Zheng B S, Liu S J. Fe Single Atoms and Fe2O3 Clusters Liberated from N-Doped Polyhedral Carbon for Chemoselective Hydrogenation under Mild Conditions[J]. ACS Appl. Mater. Interfaces, 2020,12:34122-34129. doi: 10.1021/acsami.0c09124

    19. [19]

      Yun R R, Zhang S, Ma W J, Lv X, Liu S J, Sheng T, Wang S N. Fe/Fe3C Encapsulated in N-Doped Carbon Tubes: A Recyclable Catalyst for Hydrogenation with High Selectivity[J]. Inorg. Chem., 2019,58:9469-9475. doi: 10.1021/acs.inorgchem.9b01332

    20. [20]

      Yun R R, Hong L R, Ma W J, Jia W G, Liu S J, Zheng B S. Fe/Fe2O3@N-Dopped Porous Carbon: A High-Performance Catalyst for Selective Hydrogenation of Nitro Compounds[J]. ChemCatChem, 2019,11:724-728. doi: 10.1002/cctc.201801626

    21. [21]

      Yun R R, Hong L R, Ma W J, Zhang R Y, Zhan F Y, Duan J G, Zheng B S, Wang S N. Co Nanoparticles Encapsulated in Nitrogen Doped Carbon Tubes for Efficient Hydrogenation of Quinoline under Mild Conditions[J]. ChemCatChem, 2020,12:129-134. doi: 10.1002/cctc.201901641

    22. [22]

      Gu X F, She Z, Ma T X, Tian S, Kraatz H B. Electrochemical Detection of Carcinoembryonic Antigen[J]. Biosens. Bioelectron., 2018,102:610-616. doi: 10.1016/j.bios.2017.12.014

    23. [23]

      Tang Y F, Huang Y, Chen Y H, Lu L X, Wang C, Sun T M, Wang M M, Zhu G H, Yang Y, Zhang L, Zhu J L. A Coumarin Derivative as a "Turn-On"Fluorescence Probe toward Cd2+ in Live Cells[J]. Spectrochim. Acta Part A, 2019,218:359-365. doi: 10.1016/j.saa.2019.03.104

    24. [24]

      Guo X Q, Wang M, Gu X F, Zhu J L, Tang Y F, Jiang G Q, Bai J F. Synthesis, Structures, and Luminescence of Two 2-D Microporous Metal-Organic Frameworks in the Zinc (Cadmium)-Dicarboxylate-Imidazolate System[J]. J. Coord. Chem., 2016,69:1819-1827. doi: 10.1080/00958972.2016.1172070

    25. [25]

      Wang J, Lu L X, Wang C, Wang M M, Ju J F, Zhu J L, Sun T M. An AIE and PET Fluorescent Probe for Effective Zn (Ⅱ) Detection and Imaging in Living Cells[J]. New J. Chem., 2020,44:15426-15431. doi: 10.1039/D0NJ03667F

    26. [26]

      Cui H H, Sun T M, Wang M, Chen L, Tang Y F. Bulky Anion Supported a Five-Coordinate Spin-Crossover Cobalt (Ⅱ) Complex with Slow Magnetic Relaxation[J]. J. Solid State Chem., 2020,289121535. doi: 10.1016/j.jssc.2020.121535

    27. [27]

      Li Q, Zhu H, Tang Y F, Zhu P, Ma H Y, Ge C W, Yan F. Chemically Grafting Nanoscale UIO-66 onto Polypyrrole Nanotubes for Long-Life Lithium-Sulfur Batteries[J]. Chem. Commun., 2019,55:12108-12111. doi: 10.1039/C9CC06362E

    28. [28]

      Chen J, Wang Y, Wang C W, Long R H, Chen T T, Yao Y. Functionalization of inorganic Nanomaterials with Pillar[n] arenes[J]. Chem. Commun., 2019,55:6817-6826. doi: 10.1039/C9CC03165K

    29. [29]

      Sun S Y, Geng M, Huang L, Chen Y M, Cen M P, Lu D, Wang A W, Wang Y, Shi Y J, Yao Y. A New Amphiphilic Pillar[5] arene: Synthesis and Controllable Self-Assembly in Water and Application in White-Light-Emitting Systems[J]. Chem. Commun., 2018,54:13006-13009. doi: 10.1039/C8CC07658H

    30. [30]

      Wang Y, Cai Y, Cao L Y, Cen M P, Chen Y M, Zhang R M, Chen T T, Dai H, Hu L P, Yao Y. An Amphiphilic Metallaclip with Enhanced Fluorescence Emission in Water: Synthesis and Controllable Self-Assembly into Multi-Dimensional Micro-structures[J]. Chem. Commun., 2019,55:10132-10134. doi: 10.1039/C9CC04809J

    31. [31]

      Wang Y, Wang C W, Long H R, Cao Y F, Fan D L, Cen M P, Cao LY, Chen Y M, Yao Y. Synthesis and Controllable Self-Assembly of 3D Amphiphilic Organoplatinum(Ⅱ) Metallacages in Water[J]. Chem. Commun., 2019,55:5167-5170. doi: 10.1039/C9CC02173F

    32. [32]

      Sun S Y, Lu D, Huang Q, Liu Q, Yao Y, Shi Y J. Reversible Surface Activity and Self-Assembly Behavior and Transformation of Amphiphilic Ionic Liquids in Water Induced by a Pillar[5] arene-Based Host-Guest Interaction[J]. J. Colloid Interface Sci., 2019,533:42-46. doi: 10.1016/j.jcis.2018.08.051

    33. [33]

      Yao Y, Wei X J, Chen J, dai H, Shi Y J. Amphiphilic Pillar[n] arenes[J]. Supramol. Chem., 2018,30:610-618.

    34. [34]

      Yun R R, Lu Z Y, Pan Y, You X Z, Bai J F. Formation of a Metal-Organic Framework with High Surface Area and Gas Uptake by Breaking Edges Off Truncated Cuboctahedral Cages[J]. Angew. Chem. Int. Ed., 2013,52:11282-11285. doi: 10.1002/anie.201302715

    35. [35]

      Chen C, Zhang W W, Zhang M X, Bai J F. Solvents-Dependent For-mation of Three MOFs from the Fe3O Cluster and 3, 3', 5, 5'-Diphenyl-tetracarboxylic Acid and Their Selective CO2 Adsorption[J]. Inorg. Chem., 2019,58:13836-13842. doi: 10.1021/acs.inorgchem.9b01697

    36. [36]

      Sanii R, Hua C, Patyk-Kaźmierczak E, Zaworotko M J. Solvent-Directed Control over the Topology of Entanglement in Square Lattice (sql) Coordination Networks[J]. Chem. Commun., 2019,55:1454-1457. doi: 10.1039/C8CC09152H

    37. [37]

      Zheng B, Dong H, Bai J F, Li Y Z, Li S H, Scheer M. Temperature Controlled Reversible Change of the Coordination Modes of the Highly Symmetrical Multitopic Ligand to Construct Coordination Assemblies: Experimental and Theoretical Studies[J]. J. Am. Chem. Soc., 2008,130:7778-7779. doi: 10.1021/ja800439p

    38. [38]

      Perry , Kravtsov V C, McManus G J, Zaworotko M J. Bottom up Synthesis that does not Start at the Bottom: Quadruple Covalent Cross-Linking of Nanoscale Faceted Polyhedra[J]. J. Am. Chem. Soc., 2007,129:10076-10077. doi: 10.1021/ja0734952

    39. [39]

      Yuan D Q, Zhao D, Sun D F, Zhou H C. An Isoreticular Series of Metal-Organic Frameworks with Dendritic Hexacarboxylate Ligands and Exceptionally High Gas-Uptake Capacity[J]. Angew. Chem. Int. Ed., 2010,49:5357-5361.

    40. [40]

      Yan Y, Telepeni I, Yang S H, Lin X, Kockelmann W, Dailly A, Blake A J, Lewis W, Walker G S, Allan D R, Barnett S A, Champness N R, Schröder M. Metal-Organic Polyhedral Frameworks: High H2 Adsorption Capacities and Neutron Powder Diffraction Studies[J]. J. Am. Chem. Soc., 2010,132:4092-4094. doi: 10.1021/ja1001407

    41. [41]

      Wang X S, Ma S Q, Forster P M, Yuan D Q, Eckert J, López J J, Murphy B J, Parise J B, Zhou H C. Enhancing H2 Uptake by"Close-Packing"Alignment of Open Copper Sites in Metal-Organic Frameworks[J]. Angew. Chem. Int. Ed., 2008,47:7263-7266. doi: 10.1002/anie.200802087

    42. [42]

      Zhang M X, Li B, Li Y Z, Wang Q, Zhang W W, Chen B L, Li S H, Pan Y, You X Z, Bai J F. Finely tuning MOFs towards High Performance in C2H2 Storage: Synthesis and Properties of a New MOF-505 Analogue with an Inserted Amide Functional Group[J]. Chem. Commun., 2016,52:7241-7244. doi: 10.1039/C6CC03198F

    43. [43]

      Zheng B S, Liu H T, Wang Z X, Yu X Y, Yi P G, Bai J F. Porous NbO-Type Metal-Organic Framework with Inserted Acylamide Groups Exhibiting Highly Selective CO2 Capture[J]. CrystEngComm, 2013,15:3517-3520. doi: 10.1039/c3ce26177h

    44. [44]

      Lu Z Y, Du L T, Zheng B S, Bai J F, Zhang M X, Yun R R. A Highly Porous Agw-Type Metal-Organic Framework and Its CO2 and H2 Adsorption Capacity[J]. CrystEngComm, 2013,15:9348-9351. doi: 10.1039/c3ce41119b

    45. [45]

      Du L T, Zhang J C, Lu Z Y, Duan J G, Xu L. A New Methyl-Embedded (3, 36)-Connected txt-Type Metal-Organic Framework Exhibiting High H2 Adsorption Property[J]. CrystEngComm, 2017,19:3094-3097. doi: 10.1039/C7CE00461C

    46. [46]

      Zheng B S, Wang H, Wang Z Y, Ozaki N, Hang C, Luo X, Huang L, Zeng W J, Yang M, Duan J G. A Highly Porous rht-Type Acylamide-Functionalized Metal-Organic Framework Exhibiting Large CO2 Uptake Capabilities[J]. Chem. Commun., 2016,52:12988-12991. doi: 10.1039/C6CC06734D

    47. [47]

      Lu Z Y, Zhang J F, Duan J G, Du L T, Hang C. Pore Space Partition via Secondary Metal Ions Entrapped by Pyrimidine Hooks: Influences on Structural Flexibility and Carbon Dioxide Capture[J]. J. Mater. Chem. A, 2017,5:17287-17292. doi: 10.1039/C7TA02852K

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    15. [15]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    16. [16]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(0)
  • Abstract views(574)
  • HTML views(108)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return