Citation: Qing LIN, Miao-Miao LIU, Xi-Hang WU, Shui-Ping LI, Yuan-Yuan WANG, Xue-Min HU, Wei WANG, Xiao-Juan ZHANG. Preparation and Photocatalytic Performances of Au@g-C3N4 Scaffold[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(4): 589-598. doi: 10.11862/CJIC.2022.058 shu

Preparation and Photocatalytic Performances of Au@g-C3N4 Scaffold

  • Corresponding author: Qing LIN, lnqing@jit.edu.cn
  • Received Date: 29 September 2021
    Revised Date: 20 January 2022

Figures(11)

  • The plastic melamine-formaldehyde, which was synthesized from melamine, formaldehyde, and urea, was used as the precursor for the formation of the melamine-formaldehyde scaffold by the microwave foaming method. Then, Au was deposited on the melamine-formaldehyde scaffold by the magnetron sputtering. Finally, Au deposited graphite carbon nitride (Au@g-C3N4) scaffold with a specific surface area of 1 480 m2·g-1 was successfully prepared by the thermal polymerization at 550 ℃. After deposited 6% Au, the UV - Vis spectrum of Au@g - C3N4 scaffold showed a new absorption peak at 550 nm, its absorption band edge was shifted to 507 nm, and its bandgap was reduced to 2.45 eV. Moreover, the fluorescence intensity and the electrochemical impedance decreased significantly, and the photocurrent increased from 0.28 to 0.62 μA·cm-2. The deposition of Au not only widens the UV - Vis absorption performance of Au@g-C3N4 scaffold but also inhibits the recombination of the electron -hole pairs. The photocatalytic performance of Au@g-C3N4 scaffold was stable, and its photocatalytic degradation rate for rhodamine B was about one time higher than that of g - C3N4 scaffold. Additionally, the Au@g - C3N4 scaffold would be easy to recycle and be reused in the applications, because the Au@g-C3N4 scaffold has suitable tensile strength and toughness.
  • 加载中
    1. [1]

      Lin Q, Li S P, Zhao Q Y, Wang W, Zhang X J, Hao L Y. Synergistic Effectiveness of Eggshell Membranes-supported Zinc Oxide Materials on the Removal of Organic Dyes from Wastewater[J]. Desalin. Water Treat., 2019,138:346-352. doi: 10.5004/dwt.2019.23248

    2. [2]

      Yan S C, Li Z S, Zou Z G. Photodegradation Performance of g - C3N4 Fabricated by Directly Heating Melamine[J]. Langmuir, 2009,25(17):10397-10401. doi: 10.1021/la900923z

    3. [3]

      Wen J Q, Xie J, Chen X B, Li X. A Review on g-C3N4-Based Photocatalysts[J]. Appl. Surf. Sci., 2017,391:72-123. doi: 10.1016/j.apsusc.2016.07.030

    4. [4]

      HOU J H, CAI R, SHENG M, JIANG K. Preparation and Visible Light Photocatalysis of Porous Nanosheet Graphitic Carbon Nitride[J]. Chinese J. Inorg. Chem., 2018,34(3):467-474.  

    5. [5]

      WANG H, ZHANG X D, XIE Y. Recent Progresses on the Photoexcitation Processes of Polymeric Carbon Nitride-Based Materials[J]. Chinese J. Inorg. Chem., 2017,33(11):1897-1913. doi: 10.11862/CJIC.2017.249 

    6. [6]

      LU Y, SHANGGUAN L, ZHANG H, WANG Y, TANG Y Y, SUN J H, LIU G X. Preparation of Carbon Self-Doping Graphic Carbon Nitride Nanosheets for Photocatalytic H2 Evolution Performance under Visible-Light Irradiation[J]. Chinese J. Inorg. Chem., 2021,37(4):668-674.  

    7. [7]

      Tan C E, Lee J T, Su E C, Wey M Y. Facile Approach for Z-Scheme Type Pt/g - C3N4/SrTiO3 Heterojunction Semiconductor Synthesis via Low - Temperature Process for Simultaneous Dyes Degradation and Hydrogen Production[J]. Int. J. Hydrogen Energy, 2020,45(24):13330-13339. doi: 10.1016/j.ijhydene.2020.03.034

    8. [8]

      Zhang W J, Xu D T, Wang F J, Chen M. AgCl/Au/g - C3N4 Ternary Composites: Efficient Photocatalysts for Degradation of Anionic Dyes[J]. J. Alloys Compd., 2021,868159266. doi: 10.1016/j.jallcom.2021.159266

    9. [9]

      ZHU K, OUYANG J, LIU J M, ZHU Y X, ZENG Q, CUI Y J. Preparation and Photocatalytic Hydrogen Evolution from Water of Oxygen Doped Carbon Nitride Nanosheets[J]. Chinese J. Inorg. Chem., 2019,35(6):1005-1012.  

    10. [10]

      NING X, WU Y T, WANG X F, LIU Y L. Preparation and Photocatalytic Activity of g - C3N4/SnO2 Composite[J]. Chinese J. Inorg. Chem., 2019,35(12):2243-2252. doi: 10.11862/CJIC.2019.272 

    11. [11]

      Wang W, Fang J J, Huang X. Different Behaviors Between Interband and Intraband Transitions Generated Hot Carriers on g-C3N4/Au for Photocatalytic H2 Production[J]. Appl. Surf. Sci., 2020,513145830. doi: 10.1016/j.apsusc.2020.145830

    12. [12]

      Baruah K, Kumar A, Deb P. Visible Light Active Au@g-C3N4 Core-Shell Plasmonic Photocatalyst[J]. Mater. Today, 2021,47(8):1627-1632.

    13. [13]

      Nasri A, Jaleh B, Nezafat Z, Nasrollahzadeh M, Azizian S, Jang H W, Shokouhimehr M. Fabrication of g-C3N4 /Au Nanocomposite Using Laser Ablation and Its Application as an Effective Catalyst in the Reduction of Organic Pollutants in Water[J]. Ceram. Int., 2021,47(3):3565-3572. doi: 10.1016/j.ceramint.2020.09.204

    14. [14]

      Liu Y L, Zhao X W, Ye L. A Novel Elastic Urea-Melamine-Formaldehyde Foam: Structure and Properties[J]. Ind. Eng. Chem. Res., 2016,55(32):8743-8750. doi: 10.1021/acs.iecr.6b01957

    15. [15]

      Wang D W, Zhang X X, Luo S, Li S. Preparation and Property Analysis of Melamine Formaldehyde Foam[J]. Adv. Mater. Phys. Chem., 2012,2(4):63-67. doi: 10.4236/ampc.2012.24B018

    16. [16]

      Mishra P M, Pattnaik S, Devi A P. Green Synthesis of Bio - based Au@g-C3N4 Nanocomposite for Photocatalytic Degradation of Methyl Orange[J]. Mater. Today, 2021,47(5):1218-1223.

    17. [17]

      Nanda K, Sahu S, Behera S. Liquid-Drop Model for the Size-Dependent Melting of Low-Dimensional Systems[J]. Phys. Rev. A, 2002,66(1):90-95.

    18. [18]

      Patnaik S, Sahoo D P, Parida K. Photo - Catalytic H2 Evolution over Au Modified Mesoporous g-C3N4[J]. Mater. Today, 2021,35:247-251.

    19. [19]

      Zhao X X, Guan J R, Li J Z, Li X, Wang H Q, Huo P W, Yan Y S. CeO2/3D g - C3N4 Heterojunction Deposited with Pt Cocatalyst for Enhanced Photocatalytic CO2 Reduction[J]. Appl. Surf. Sci., 2021,537147891. doi: 10.1016/j.apsusc.2020.147891

    20. [20]

      Wang D D, Li Y H, Yu B, Li H J, Jiang W, Deng X, Wen Y, Liu C B, Che G B. Improved Visible- Light Driven Photocatalysis by Loading Au onto C3N4 Nanorods for Degradation of RhB and Reduction of CO2[J]. Adv. Powder Technol., 2021,32(5):1653-1662. doi: 10.1016/j.apt.2021.03.022

    21. [21]

      Papailias I, Giannakopoulou T, Todorova N, Demotikali D, Vaimakis T, Trapalis C. Effect of Processing Temperature on Structure and Photocatalytic Properties of g-C3N4[J]. Appl. Surf. Sci., 2015,358:278-286. doi: 10.1016/j.apsusc.2015.08.097

    22. [22]

      Jiang J Z, Ou-yang L, Zhu L H, Zheng A M, Zou J, Yi X F, Tang H Q. Dependence of Electronic Structure of g-C3N4 on the Layer Number of Its Nanosheets: A Study by Raman Spectroscopy Coupled with First-Principles Calculations[J]. Carbon, 2014,80:213-221. doi: 10.1016/j.carbon.2014.08.059

    23. [23]

      Li H, Jing Y, Ma X L, Liu T Y, Yang L F, Liu B, Yin S, Wei Y Z, Wang Y H. Construction of a Well - Dispersed Ag/graphene - like g - C3N4 Photocatalyst and Enhanced Visible Light Photocatalytic Activity[J]. RSC Adv., 2017,7(14):8688-8693. doi: 10.1039/C6RA26498K

    24. [24]

      Qin Y Q, Lu J, Meng F Y, Lin X Y, Feng Y H, Yan Y, Meng M. Rationally Constructing of a Novel 2D/2D WO3/Pt/g-C3N4 Schottky-Ohmic Junction towards Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution and Mechanism Insight[J]. J. Colloid Interface Sci., 2021,586:576-587. doi: 10.1016/j.jcis.2020.10.123

    25. [25]

      Faisal M, Jalalah M, Harraz F A, El-Toni A M, Khan A, Al-Assiri M S. Au Nanoparticles - Doped g - C3N4 Nanocomposites for Enhanced Photocatalytic Performance under Visible Light Illumination[J]. Ceram. Int., 2020,46(14):22090-22101. doi: 10.1016/j.ceramint.2020.05.250

    26. [26]

      Pei F B, Feng S S, Wu Y, Lv X C, Wang H L, Chen S M, Hao Q L, Cao Y, Lei W, Tong Z Y. Label-Free Photoelectrochemical Immunosensor for Aflatoxin B1 Detection Based on the Z - Scheme Heterojunction of g-C3N4/Au/WO3[J]. Biosens. Bioelectron., 2021,189113373. doi: 10.1016/j.bios.2021.113373

    27. [27]

      TANG J, LI Z F, YANG X F, LI J, ZHANG T T. Effect of Dry and Wet Environment of Ball Milling on Visible Light Catalytic Performance of Sulfur - Doped Carbon Nitride[J]. Chinese J. Inorg. Chem., 2020,36(3):475-484.  

    28. [28]

      Mousavi M, Habibi - Yangjeh A. Decoration of Fe3 O4 and CoWO4 Nanoparticles over Graphitic Carbon Nitride: Novel Visible - Light - Responsive Photocatalysts with Exceptional Photocatalytic Performances[J]. Mater. Res. Bull., 2018,105:159-171. doi: 10.1016/j.materresbull.2018.04.052

    29. [29]

      Fu J W, Yu J G, Jiang C J, Cheng B. g-C3N4-Based Heterostructured Photocatalysts[J]. Adv. Energy Mater., 2018,8(3)1701503. doi: 10.1002/aenm.201701503

    30. [30]

      CHEN Y, LIU H B. Construction and Photocatalytic Performance of Ultrathin Graphitic Carbon Nitride Nanosheets[J]. Chinese J. Inorg. Chem., 2017,33(12):2255-2261. doi: 10.11862/CJIC.2017.218 

    31. [31]

      Fu Y S, Huang T, Jia B Q, Zhu J W, Wang X. Reduction of Nitrophenols to Aminophenols under Concerted Catalysis by Au/g-C3N4 Contact System[J]. Appl. Catal. B, 2017,202:430-437. doi: 10.1016/j.apcatb.2016.09.051

    32. [32]

      Lee J T, Chen Y J, Su E C, Wey M Y. Synthesis of Solar - Light Responsive Pt/g-C3N4 /SrTiO3 Composite for Improved Hydrogen Production: Investigation of Pt/g-C3N4/SrTiO3 Synthetic Sequences[J]. Int. J. Hydrogen Energy, 2019,44(39):21413-21423. doi: 10.1016/j.ijhydene.2019.06.178

  • 加载中
    1. [1]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    9. [9]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    10. [10]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    11. [11]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    12. [12]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    13. [13]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    14. [14]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(3)
  • Abstract views(571)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return