Citation: Feng-Juan ZHA, Qing LIU, Jian-You WANG, Yu-Han LIN, Chuan-Yi WANG, Ying-Xuan LI. One-Dimensional TiO2 Anatase/Rutile Heterophase Junctions: Preparation and Photocatalytic Properties for Degrading Formaldehyde[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 510-518. doi: 10.11862/CJIC.2022.057 shu

One-Dimensional TiO2 Anatase/Rutile Heterophase Junctions: Preparation and Photocatalytic Properties for Degrading Formaldehyde

  • Corresponding author: Ying-Xuan LI, liyingxuan@sust.edu.cn
  • Received Date: 2 November 2021
    Revised Date: 19 January 2022

Figures(9)

  • TiO2 heterophase junctions are mainly prepared by high-temperature method, and it is difficult to control the morphology and composition of the prepared materials. Especially, it is still challenging to prepare a one-dimensional TiO2 heterophase junction at a lower temperature. In this paper, a simple and convenient one-step hydrothermal method was developed prepared one-dimensional nano-TiO2 heterophase junctions at a relatively low temperature (180 ℃). X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses show that the one-dimensional rutile TiO2 nanorods (length: (400±50) nm, diameter: (60±5) nm) are the basic structure of the prepared materials, and the anatase TiO2 nanoparticles with uniform size distribution (diameter: (9.5±0.5) nm) are loaded on the nanorods in a high-density, monodispersed form. By adjusting the hydrothermal time, the anatase TiO2 contents in the prepared materials could be controlled within the range of 20%-50%. The TiO2 heterophase junctions were successfully applied to the photocatalytic degradation of formaldehyde. When the content of anatase phase TiO2 was 33% (TiO2-24, the hydrothermal time was 24 h), the TiO2 heterophase junction had the best formaldehyde degradation performance. After 25 min photocatalytic reaction, the 92% of formaldehyde (120 mg·L-1) was degraded into CO2 under a low-intensity LED lamp (wavelength: 365 nm, light intensity: 12.26 mW·cm-2), confirming the efficient activity of the TiO2 heterophase junction. Steady-state fluorescence spectroscopy and photoelec-trochemical tests showed that charge separation and transfer efficiencies on TiO2-24 were much higher than those on other samples prepared at different hydrothermal times. The one-dimensional TiO2 heterophase junction not only is beneficial to the transfer of photogenerated charge but also can directionally drive the separation of the charges, which makes one-dimensional TiO2 heterophase photocatalyst has a higher formaldehyde degradation performance.
  • 加载中
    1. [1]

      Zhang L, Routsong R, Strand S E. Greatly Enhanced Removal of Volatile Organic Carcinogens by a Genetically Modified Houseplant, Pothos Ivy (Epipremnum aureum) Expressing the Mammalian Cytochrome P4502e1 Gene[J]. Environ. Sci. Technol., 2019,53(1):325-331. doi: 10.1021/acs.est.8b04811

    2. [2]

      Zhu M P, Muhammad Y, Hu P, Wang B F, Wu Y, Sun X D, Tong Z F, Zhao Z X. Enhanced Interfacial Contact of Dopamine Bridged Melamine-Graphene/TiO2 Nano-Capsules for Efficient Photocatalytic Degradation of Gaseous Formaldehyde[J]. Appl. Catal. B, 2018,232:182-193. doi: 10.1016/j.apcatb.2018.03.061

    3. [3]

      Huang M M, Li Y X, Li M W, Zhao J C, Zhu Y Q, Wang C Y, Sharma V. Active Site Directed Tandem Catalysis on Single Platinum Nanoparticles for Efficient and Stable Oxidation of Formaldehyde at Room Temperature[J]. Environ. Sci. Technol., 2019,53(7):3610-3619. doi: 10.1021/acs.est.9b01176

    4. [4]

      Xu Z H, Yu J G, Jaroniec M. Efficient Catalytic Removal of Formaldehyde at Room Temperature Using AlOOH Nanoflakes with Deposited Pt[J]. Appl. Catal. B, 2015,163:306-312. doi: 10.1016/j.apcatb.2014.08.017

    5. [5]

      Yan Z X, Xu Z H, Yu J G, Jaroniec M. Highly Active Mesoporous Ferrihydrite Supported Pt Catalyst for Formaldehyde Removal at Room Temperature[J]. Environ. Sci. Technol., 2015,49(11):6637-6644. doi: 10.1021/acs.est.5b00532

    6. [6]

      Meng A Y, Cheng B, Tan H Y, Fan J J, Su C L, Yu J G. TiO2/Polydopamine S-Scheme Heterojunction Photocatalyst with Enhanced CO2-Reduction Selectivity[J]. Appl. Catal. B, 2021,289120039. doi: 10.1016/j.apcatb.2021.120039

    7. [7]

      Han X J, Li M W, Ma Y N, Li Y X, Ma H R, Wang C Y. Thermal Coupled Photocatalysis to Enhance CO2 Reduction Activities on Ag Loaded g-C3N4 Catalysts[J]. Surf. Interfaces, 2021,23101006. doi: 10.1016/j.surfin.2021.101006

    8. [8]

      Li Y X, Wen M M, Wang Y, Tian G, Wang C Y, Zhao J C. Plasmonic Hot Electrons from Oxygen Vacancies for Infrared Light-Driven Catalytic CO2 Reduction on Bi2O3-x[J]. Angew. Chem. Int. Ed., 2021,60(2):910-916. doi: 10.1002/anie.202010156

    9. [9]

      Li Y X, Hui D P, Sun Y Q, Wang Y, Wu Z, Wang C Y, Zhao J C. Boosting Thermo-Photocatalytic CO2 Conversion Activity by Using Photosynthesis-Inspired Electron-Proton-Transfer Mediators[J]. Nat. Commun., 2021,12(1)123. doi: 10.1038/s41467-020-20444-1

    10. [10]

      Sun N, Zhu Y X, Li M W, Zhang J, Qin J N, Li Y X, Wang C Y. Thermal Coupled Photocatalysis over Pt/g-C3N4 for Selectively Reducing CO2 to CH4 via Cooperation of the Electronic Metal-Support Interaction Effect and the Oxidation State of Pt[J]. Appl. Catal. B, 2021,298120565. doi: 10.1016/j.apcatb.2021.120565

    11. [11]

      ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave-Induced Assembly of CuS@MoS2 Core-Shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chim. Sinica, 2020,78(9):961-967.

    12. [12]

      Chen Y, Xu M J, Wen J Y, Wan Y, Zhao Q F, Cao X, Ding Y, Wang Z L. Selective Recovery of Precious Metals through Photocatalysis[J]. Nat. Sustainability, 2021,4(7):618-626. doi: 10.1038/s41893-021-00697-4

    13. [13]

      Mao L, Cai X Y, Zhu M S. Hierarchically 1D CdS Decorated on 2D Perovskite-Type La2Ti2O7 Nanosheet Hybrids with Enhanced Photocatalytic Performance[J]. Rare Met., 2021,40(5):1067-1076. doi: 10.1007/s12598-020-01589-w

    14. [14]

      Zhang J, Yang P L, Zheng J L, Li J, Lv S, Jin T X, Zou Y N, Xu P Y, Cheng C X, Zhang Y Q. Degradation of Gaseous HCHO in a Rotating Photocatalytic Fuel Cell System with an Absorption Efficiency of Up to 94%[J]. Chem. Eng. J., 2020,392123634. doi: 10.1016/j.cej.2019.123634

    15. [15]

      Guan S H, Zhao K F, Tong Q, Rao Q X, Cheng L, Song W, Zhang Q C, Wang X L, Song W G. A Review of Photocatalytic Materials Application on Nonylphenol Degradation[J]. Environ. Challenges, 2021,4100172. doi: 10.1016/j.envc.2021.100172

    16. [16]

      Chen X B, Mao S S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev., 2007,107(7):2891-2959.

    17. [17]

      Xing X L, Zhang M, Hou L L, Xiao L M, Li Q Y, Yang J J. Z-Scheme BCN-TiO2 Nanocomposites with Oxygen Vacancy for High Efficiency Visible Light Driven Hydrogen Production[J]. Int. J. Hydrogen Energy, 2017,42(47):28434-28444. doi: 10.1016/j.ijhydene.2017.09.125

    18. [18]

      Koirala R, Pratsinis S E, Baiker A. Synthesis of Catalytic Materials in Flames: Opportunities and Challenges[J]. Chem. Soc. Rev., 2016,45(11):3053-3068. doi: 10.1039/C5CS00011D

    19. [19]

      Hu D S, Xie Y, Liu L J, Zhou P P, Zhao J, Xu J W, Ling Y. Constructing TiO2 Nanoparticles Patched Nanorods Heterostructure for Efficient Photodegradation of Multiple Organics and H2 Production[J]. Appl. Catal. B, 2016,188:207-216. doi: 10.1016/j.apcatb.2016.01.069

    20. [20]

      Li Y J, Yin Z H, Ji G R, Liang Z Q, Xue Y J, Guo Y C, Tian J, Wang X Z, Cui H Z. 2D/2D/2D Heterojunction of Ti3C2 MXene/MoS2 Nanosheets/TiO2 Nanosheets with Exposed (001) Facets toward Enhanced Photocatalytic Hydrogen Production Activity[J]. Appl. Catal. B, 2019,246:12-20. doi: 10.1016/j.apcatb.2019.01.051

    21. [21]

      Holm A, Hamandi M, Simonet F, Jouguet B, Dappozze F, Guillard C. Impact of Rutile and Anatase Phase on the Photocatalytic Decomposition of Lactic Acid[J]. Appl. Catal. B, 2019,253:96-104. doi: 10.1016/j.apcatb.2019.04.042

    22. [22]

      Bacsa R, Kiwi J. Effect of Rutile Phase on the Photocatalytic Properties of Nanocrystalline Titania during the Degradation of p-Coumaric Acid[J]. Appl. Catal. B, 1998,16(1):19-29. doi: 10.1016/S0926-3373(97)00058-1

    23. [23]

      Kumaravel V, Mathew S, Bartlett J, Pillai S C. Photocatalytic Hydrogen Production Using Metal Doped TiO2: A Review of Recent Advances[J]. Appl. Catal. B, 2019,244:1021-1064. doi: 10.1016/j.apcatb.2018.11.080

    24. [24]

      Wang L B, Cheng B, Zhang L Y, Yu J G. In Situ Irradiated XPS Investigation on S-Scheme TiO2@ZnIn2S4 Photocatalyst for Efficient Photocatalytic CO2 Reduction[J]. Small, 2021,17(41)2103447. doi: 10.1002/smll.202103447

    25. [25]

      Zhang C B, He H. A Comparative Study of TiO2 Supported Noble Metal Catalysts for the Oxidation of Formaldehyde at Room Temperature[J]. Catal. Today, 2007,126(3):345-350.

    26. [26]

      Hu S J, Yu Y J, Guan Y, Lia Y H, Wang B L, Zhu M S. Two-Dimensional TiO2 (001) Nanosheets as an Effective Photo-Assisted Recyclable Sensor for the Electrochemical Detection of Bisphenol A[J]. Chin. Chem. Lett., 2020,31(10):2839-2842. doi: 10.1016/j.cclet.2020.08.021

    27. [27]

      Lyu J Z, Zhou L L, Shao J W, Zhou Z, Gao J X, Dong Y M, Wang Z Y, Li J. TiO2 Hollow Heterophase Junction with Enhanced Pollutant Adsorption, Light Harvesting, and Charge Separation for Photocatalytic Degradation of Volatile Organic Compounds[J]. Chem. Eng. J., 2020,391123602. doi: 10.1016/j.cej.2019.123602

    28. [28]

      Sutiono H, Tripathi A M, Chen H M, Chen C H, Su W N, Chen L Y, Dai H J, Hwang B J. Facile Synthesis of [101]-Oriented Rutile TiO2 Nanorod Array on FTO Substrate with a Tunable Anatase-Rutile Heterojunction for Efficient Solar Water Splitting[J]. ACS Sustainable Chem. Eng., 2016,4(11):5963-5971. doi: 10.1021/acssuschemeng.6b01066

    29. [29]

      Wang W K, Chen J J, Gao M, Huang Y X, Zhang X, Yu H Q. Photocatalytic Degradation of Atrazine by Boron-Doped TiO2 with a Tunable Rutile/Anatase Ratio[J]. Appl. Catal. B, 2016,195:69-76. doi: 10.1016/j.apcatb.2016.05.009

    30. [30]

      Liu N, Chang Y, Feng Y L, Cheng Y, Sun X J, Jian H, Feng Y Q, Li X, Zhang H Y. {101}-{001} Surface Heterojunction-Enhanced Antibacterial Activity of Titanium Dioxide Nanocrystals under Sunlight Irradiation[J]. ACS Appl. Mater. Interfaces, 2017,9(7):5907-5915. doi: 10.1021/acsami.6b16373

    31. [31]

      Zhang J, Xu Q, Feng Z C, Li M J, Li C. Importance of the Relationship between Surface Phases and Photocatalytic Activity of TiO2[J]. Angew. Chem. Int. Ed., 2008,120(9):1790-1793. doi: 10.1002/ange.200704788

    32. [32]

      Zhang X D, Chen J F, Jiang S T, Zhang X L, Bi F K, Yang Y, Wang Y X, Wang Z. Enhanced Photocatalytic Degradation of Gaseous Toluene and Liquidus Tetracycline by Anatase/Rutile Titanium Dioxide with Heterophase Junction Derived from Materials of Institute Lavoisier-125(Ti): Degradation Pathway and Mechanism Studies[J]. J. Colloid Interface Sci., 2021,588:122-137. doi: 10.1016/j.jcis.2020.12.042

    33. [33]

      Sun S, Gao P, Yang Y, Yang P P, Chen Y J, Wang Y B. N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production[J]. ACS Appl. Mater. Interfaces, 2016,8(28):18126-18131. doi: 10.1021/acsami.6b05244

    34. [34]

      Macak J M, Zlamal M, Krysa J, Schmuki P. Self-Organized TiO2 Nanotube Layers as Highly Efficient Photocatalysts[J]. Small, 2007,3(2):300-304. doi: 10.1002/smll.200600426

    35. [35]

      Buchalska M, Kobielusz M, Matuszek A, Pacia M, Wojtyła S, Macyk W. On Oxygen Activation at Rutile-and Anatase-TiO2[J]. ACS Catal., 2015,5(12):7424-7431. doi: 10.1021/acscatal.5b01562

    36. [36]

      Copeland L E, Bragg R H. Quantitative X-ray Diffraction Analysis[J]. Anal. Chem., 1958,30(2):196-201. doi: 10.1021/ac60134a011

    37. [37]

      An X Q, Hu C Z, Liu H J, Qu J H. Hierarchical Nanotubular Anatase/Rutile/TiO2(B) Heterophase Junction with Oxygen Vacancies for Enhanced Photocatalytic H2 Production[J]. Langmuir, 2018,34(5):1883-1889. doi: 10.1021/acs.langmuir.7b03745

    38. [38]

      Zhu X W, Zhou G, Yi J J, Ding P H, Yang J M, Zhong K, Song Y H, Hua Y J, Zhu X L, Yuan J J, She Y B, Li H M, Xu H. Accelerated Photoreduction of CO2 to CO over a Stable Heterostructure with a Seamless Interface[J]. ACS Appl. Mater. Interfaces, 2021,13(33):39523-39532. doi: 10.1021/acsami.1c12692

    39. [39]

      Sanchez E, Lopez T. Effect of the Preparation Method on the Band Gap of Titania and Platinum-Titania Sol-Gel Materials[J]. Mater. Lett., 1995,25(5/6):271-275.

    40. [40]

      Pfeifer V, Erhart P, Li S, Rachut K, Morasch J, Brötz J, Reckers P, Mayer T, Rühle S, Zaban A, Seró M I, Bisquert J, Jaegermann W, Klein A. Energy Band Alignment between Anatase and Rutile TiO2[J]. J. Phys. Chem. Lett., 2013,4(23):4182-4187. doi: 10.1021/jz402165b

    41. [41]

      Li A L, Wang Z L, Yin H, Wang S Y, Yan P L, Huang B K, Wang X L, Li R G, Zong X, Han H X, Li C. Understanding the Anatase-Rutile Phase Junction in Charge Separation and Transfer in a TiO2 Electrode for Photoelectrochemical Water Splitting[J]. Chem. Sci., 2016,7(9):6076-6082. doi: 10.1039/C6SC01611A

    42. [42]

      Chiu Y H, Naghadeh S B, Lindley S A, Lai T H, Kuo M Y, Chang K D, Zhang J Z, Hsu Y J. Yolk-Shell Nanostructures as an Emerging Photocatalyst Paradigm for Solar Hydrogen Generation[J]. Nano Energy, 2019,62:289-298. doi: 10.1016/j.nanoen.2019.05.008

    43. [43]

      Fu J W, Xu Q L, Low J X, Jiang C J, Yu J G. Ultrathin 2D/2D WO3/g-C3N4 Step-Scheme H2-Production Photocatalyst[J]. Appl. Catal. B, 2019,243:556-565. doi: 10.1016/j.apcatb.2018.11.011

    44. [44]

      Noorimotlagh Z, Kazeminezhad I, Jaafarzadeh N, Ahmadi M, Ramezani Z, Martinez S S. The Visible-Light Photodegradation of Nonylphenol in the Presence of Carbon-Doped TiO2 with Rutile/Anatase Ratio Coated on GAC: Effect of Parameters and Degradation Mechanism[J]. J. Hazard. Mater., 2018,350:108-120. doi: 10.1016/j.jhazmat.2018.02.022

    45. [45]

      Peral J, Ollis D F. Heterogeneous Photocatalytic Oxidation of Gas-Phase Organics for Air Purification: Acetone, 1-Butanol, Butyraldehyde, Formaldehyde, and m-Xylene Oxidation[J]. J. Catal., 1992,136(2):554-565. doi: 10.1016/0021-9517(92)90085-V

    46. [46]

      Aguado M A, Anderson M A, Hill Jr C G. Influence of Light Intensity and Membrane Properties on the Photocatalytic Degradation of Formic Acid over TiO2 Ceramic Membranes[J]. J. Mol. Catal., 1994,89(1/2):165-178.

  • 加载中
    1. [1]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    2. [2]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    3. [3]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    4. [4]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    6. [6]

      Tingting LiuPengfei SunWei ZhaoYingshuang LiLujun ChengJiahai FanXiaohui BiXiaoping Dong . Magnesium doping to improve the light to heat conversion of OMS-2 for formaldehyde oxidation under visible light irradiation. Chinese Chemical Letters, 2024, 35(4): 108813-. doi: 10.1016/j.cclet.2023.108813

    7. [7]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    8. [8]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(29)
  • Abstract views(1454)
  • HTML views(529)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return