Citation: Xiao-Dong HUANG, Jiong-Jia CHENG, Cheng-Long TAO, Jian WANG, Xiao-Feng WANG, Gang WU, Guang-Xiang LIU. Barium Complex In Situ Synthesized from 1, 4, 5, 8-Naphthalene Tetracarboxylic Acid: Structure, Detection of Aromatic Amines, and Use as a Precursor of Nano BaCO3[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 559-568. doi: 10.11862/CJIC.2022.053 shu

Barium Complex In Situ Synthesized from 1, 4, 5, 8-Naphthalene Tetracarboxylic Acid: Structure, Detection of Aromatic Amines, and Use as a Precursor of Nano BaCO3

  • Corresponding author: Xiao-Feng WANG, wangxf0215@163.com
  • Received Date: 24 September 2021
    Revised Date: 27 December 2021

Figures(14)

  • Using 1, 4, 5, 8-naphthalene tetracarboxylic acid as a raw material, a luminescent barium-based metalorganic framework (MOF), [Ba(dna)(H2O)2]n (1, H2dna=1, 8-naphthalic anhydride-4, 5-dicarboxylic), with a 3D topological structure was synthesized by in situ reaction under solvothermal conditions, and characterized by single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, and powder X-ray diffraction. The structural analysis demonstrates that it has the underlying 3D topology, encompassing a π-conjugated organic ligand with an anhydride group. It exhibited a low detection limit for aromatic amines in an aqueous solution, which may be driven by an anhydride amine reaction between the ligand and the hosted amines, with a significant enhancement of the emission intensity and visual color change. Furthermore, micro-crystalline BaCO3 particles can be prepared through direct calcination of complex 1 as a precursor at moderately elevated temperatures.
  • 加载中
    1. [1]

      Merchant Z M, Cheng S G G. Developments in Characterization of Foods Using Antibodies//Gaonkar A G. Characterization of Foods, Emerging Methods. New York: Elsevier Science, 1995: 347-376

    2. [2]

      Bao B, Yuwen L L, Zheng X, Weng L, Zhu X, Zhan X, Wang L. A Fluorescent Conjugated Polymer for Trace Detection of Diamines and Biogenic Polyamines[J]. J. Mater. Chem., 2010,20(43):9628-9634. doi: 10.1039/c0jm01467b

    3. [3]

      Kaur N, Chopra S, Singh G, Raj P, Bhasin A, Sahoo S K, Kuwar A, Singh N. Chemosensors for Biogenic Amines and Biothiols[J]. J. Mater. Chem. B, 2018,6(30):4872-4902. doi: 10.1039/C8TB00732B

    4. [4]

      Medina M Á, Urdiales J L, Rodríguez-Caso C, Ramírez F J, Sanchez-Jiménez F. Biogenic Amines and Polyamines: Similar Biochemistry for Different Physiological Missions and Biomedical Applications[J]. Crit. Rev. Biochem. Mol. Biol., 2003,38(1):23-59. doi: 10.1080/713609209

    5. [5]

      Kumpf J, Bunz U H F. Aldehyde-Appended Distyrylbenzenes: Amine Recognition in Water[J]. Chem. Eur. J., 2012,18(29):8921-8924. doi: 10.1002/chem.201200930

    6. [6]

      Comes M, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Villaescusa L A, Amoros P, Beltran D. Chromogenic Discrimination of Primary Aliphatic Amines in Water with Functionalized Mesoporous Silica[J]. Adv. Mater., 2004,16(20):1783-1786. doi: 10.1002/adma.200400143

    7. [7]

      Hinoue T, Miyata M, Hisaki I, Tohnai N. Guest-Responsive Fluorescence of Inclusion Crystals with π-Stacked Supramolecular Beads[J]. Angew. Chem. Int. Ed., 2012,51(1):155-158. doi: 10.1002/anie.201106849

    8. [8]

      Stetter J R, Penrose W R, Yao S. Sensors, Chemical Sensors, Electrochemical Sensors, and ECS[J]. J. Electrochem. Soc., 2003,150(2):11-16.  

    9. [9]

      Zhou D Y, Wang Y Y, Jia J, Yu W Z, Qu B F, Li X, Sun X. H-Bonding and Charging Mediated Aggregation and Emission for Fluorescence Turn-On Detection of Hydrazine Hydrate[J]. Chem. Commun., 2015,51(53):10656-10659. doi: 10.1039/C5CC02897C

    10. [10]

      Mani P, Ojha A A, Reddy V S, Mandal S. "Turn-On"Fluorescence Sensing and Discriminative Detection of Aliphatic Amines Using a 5-Fold-Interpenetrated Coordination Polymer[J]. Inorg. Chem., 2017,56(12):6772-6775. doi: 10.1021/acs.inorgchem.7b00787

    11. [11]

      Yin X M, Gao L L, Li P, Bu R, Sun W J, Gao E Q. Fluorescence Turn-On Response Amplified by Space Confinement in Metal-Organic Frameworks[J]. ACS Appl. Mater. Interfaces, 2019,11(50):47112-47120. doi: 10.1021/acsami.9b18307

    12. [12]

      Liu Z Q, HUANG Y Q, SUN W Y. Progress in Fluorescent Recognition and Sensing of Solvent and Small Organic Molecules Based on Metal-Organic Frameworks[J]. Chinese J. Inorg. Chem., 2017,33(11):1959-1969. doi: 10.11862/CJIC.2017.244

    13. [13]

      LIU Z, CHEN X, FENG Y L. Two Series of (4, 8)-Connected Lanthanide-Metal Organic Frameworks Based on a Tetra-carboxylate Ligand for Sensing of Small Molecules[J]. Chinese J. Inorg. Chem., 2016,32(8):1413-1420.  

    14. [14]

      Kreno L E, Leong L E, Farha O K, Allendorf M, Van Duyne R P, Hupp J T. Metal-Organic Framework Materials as Chemical Sensors[J]. Chem. Rev., 2012,112(2):1105-1125. doi: 10.1021/cr200324t

    15. [15]

      Yu C X, Chen J, Zhang Y, Song W B, Li X Q, Chen F J, Zhang Y J, Liu D, Liu L L. Highly Efficient and Selective Removal of Anionic Dyes from Aqueous Solution by Using a Protonated Metal-Organic Framework[J]. J. Alloys Compd., 2021,853157383. doi: 10.1016/j.jallcom.2020.157383

    16. [16]

      Mallick A, El-Zohry A M, Shekhah O, Yin J, Jia J T, Aggarwal H, Emwas A, Mohammed O F, Eddaoudi M. Unprecedented Ultralow Detection Limit of Amines Using a Thiadiazole-Functionalized Zr(Ⅳ)-Based Metal-Organic Framework[J]. J. Am. Chem. Soc., 2019,141(18):7245-7249. doi: 10.1021/jacs.9b01839

    17. [17]

      Hazra A, Bej S, Mondal A, Murmu N C, Banerjee P. Discerning Detection of Mutagenic Biopollutant TNP from Water and Soil Samples with Transition Metal-Containing Luminescence Metal-Organic Frameworks[J]. ACS Omega, 2020,5(26):15949-15961. doi: 10.1021/acsomega.0c01194

    18. [18]

      Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gandara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Large-Pore Apertures in a Series of Metal-Organic Frameworks[J]. Science, 2012,336(6084):1018-1023. doi: 10.1126/science.1220131

    19. [19]

      Van-Humbeck J F, McDonald T M, Jing X, Wiers B M, Zhu G, Long J R. Ammonia Capture in Porous Organic Polymers Densely Functionalized with Brønsted Acid Groups[J]. J. Am. Chem. Soc., 2014,136(6):2432-2440. doi: 10.1021/ja4105478

    20. [20]

      Marsh C, Han X, Li J N, Lu Z Z, Argent S P, Silva I, Cheng Y Q, Daemen L L, Ramirez-Cuesta A J, Thompson S P, Blake A J, Yang S H, Schröder M. Exceptional Packing Density of Ammonia in a Dual-Functionalized Metal-Organic Framework[J]. J. Am. Chem. Soc., 2021,143(17):6586-6592. doi: 10.1021/jacs.1c01749

    21. [21]

      Sun L B, Li Y, Liang Z Q, Yua J H, Xua R R. Structures and Properties of Lanthanide Metal-Organic Frameworks Based on a 1, 2, 3-Triazole-Containing Tetracarboxylate Ligand[J]. Dalton Trans., 2012,41:12790-12796. doi: 10.1039/c2dt31717f

    22. [22]

      Fan L M, Fan W L, Li B, Liu X Z, Zhao X, Zhang X T. Structural Diversities and Related Properties of Four Coordination Polymers Synthesized from Original Ligand of 3, 3', 5, 5'-Azobenzenetetracar-boxylic Acid[J]. Dalton Trans., 2015,44:2380-2389. doi: 10.1039/C4DT03076A

    23. [23]

      Cui Y J, Yue Y F, Qian G D, Chen B L. Luminescent Functional Metal-Organic Frameworks[J]. Chem. Rev., 2012,112(2):1126-1162. doi: 10.1021/cr200101d

    24. [24]

      Wu G, Feng J H, Wang X F. Synthesis, Crystal Structure, and Physical Properties of a Barium(Ⅱ) Benzene-1, 2, 3-tricarboxylic Acid Complex[J]. Z. Anorg. Allg. Chem., 2012,638(6):1047-1052. doi: 10.1002/zaac.201100532

    25. [25]

      Wang X F, Yu L, Wei H, Wu G. Synthesis, Crystal Structure, and Physical Properties of a Barium(Ⅱ) p-(Carboxy-l-methyloxy)-benzene-carboxylic Acid Complex[J]. Z. Anorg. Allg. Chem., 2011,637(2):289-292.

    26. [26]

      Al-Terkawi A, Scholz G, Emmerling F, Kemnitz E. Barium Coordination Polymers Based on Fluorinated and Fluorine-Free Benzene-Dicarboxylates: Mechanochemical Synthesis and Spectroscopic Characterization[J]. Solid State Sci., 2018,79:99-108. doi: 10.1016/j.solidstatesciences.2018.03.013

    27. [27]

      Wu G, Zhang S Q, Guo L. Synthesis, Structure, and Properties of a New Calcium(Ⅱ) Complex of 1, 10-Phenanthroline, 1, 2, 4, 5-Benzene-tetracarboxylic Acid, and a New Precursor to Produce Pure Phase Microcrystalline Calcite Particles[J]. Z. Anorg. Allg. Chem., 2013,639(5):804-809. doi: 10.1002/zaac.201200502

    28. [28]

      Thakuria R, Nath N K, Saha B K. The Nature and Applications of π-π Interactions: A Perspective[J]. Cryst. Growth Des., 2019,19(2):523-528. doi: 10.1021/acs.cgd.8b01630

    29. [29]

      Xu T, Mohr S, Amende M, Laurin M, Döpper T, Görling A, Libuda J. Benzoic Acid and Phthalic Acid on Atomically Well-Defined MgO (100) Thin Films: Adsorption, Interface Reaction, and Thin Film Growth[J]. J. Phys. Chem. C, 2015,119(48):26968-26979. doi: 10.1021/acs.jpcc.5b07591

    30. [30]

      Nyquist R A. Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra: Vol. 1. Elsevier, 2001: 205

    31. [31]

      Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 5th ed. Wiley, 1997: 59-62

    32. [32]

      Li Y L, Zhao Y, Wang P, Kang Y S, Liu Q, Zhang X D, Sun W Y. Multifunctional Metal-Organic Frameworks with Fluorescent Sensing and Selective Adsorption Properties[J]. Inorg. Chem., 2016,55(22):11821-11830. doi: 10.1021/acs.inorgchem.6b01869

    33. [33]

      Zheng X F, Zhou L, Huang Y M, Wang C G, Duan J G, Wen L L, Tian Z F, Li D F. A Series of Metal-Organic Frameworks Based on 5-(4-Pyridyl)-isophthalic Acid: Selective Sorption and Fluorescence Sensing[J]. J. Mater. Chem. A, 2014,2(31):12413-12422. doi: 10.1039/C4TA01900H

    34. [34]

      Xu Y, Tao C L, Yu M X, Xiong Y, Ouyang Y N, Liu X G, Zhao Z J. Tetraphenylethene-Based Luminescent Metal-Organic Framework for Effective Differentiation of cis/trans Isomers[J]. ACS Appl. Mater. Interfaces, 2020,12(31):35266-35272. doi: 10.1021/acsami.0c10702

    35. [35]

      Liu C Y, Chen X R, Chen H X, Niu Z, Hirao H, Braunstein P, Lang J P. Ultrafast Luminescent Light-Up Guest Detection Based on the Lock of the Host Molecular Vibration[J]. J. Am. Chem. Soc., 2020,142(14):6690-6697. doi: 10.1021/jacs.0c00368

    36. [36]

      Zhang H Y, Nie Y Z, Zhi X M, Du H F, Yang J. Controlled Ring-Opening Polymerization of α-Amino Acid N-Carboxy-anhydride by Frustrated Amine/Borane Lewis Pairs[J]. Chem. Commun., 2017,53(37):5155-5158. doi: 10.1039/C7CC01440F

    37. [37]

      Dadkhah M, Salavati-Niasari M, Davar F. A New Inorganic Framework in the Synthesis of Barium Carbonate Nanoparticles via Convenient Solid State Decomposition Route[J]. Adv. Powder Technol., 2013,24(1):14-20. doi: 10.1016/j.apt.2012.01.004

    38. [38]

      Tabatabaee M, Kukovec B M, Amjad S, Shishebor M R. Two Different Barium(Ⅱ) 2D Coordination Polymers Constructed with Pyrazine-2, 3-dicarboxylate: Synthesis, Crystal Structures, and Thermal Decomposition to Barium (Ⅱ) Carbonate Nanoparticles[J]. Aust. J. Chem., 2016,69(11):1261-1267. doi: 10.1071/CH16091

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    3. [3]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    4. [4]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    5. [5]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    6. [6]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    7. [7]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    8. [8]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      Jian HanLi-Li ZengQin-Yu FeiYan-Xiang GeRong-Hui HuangFen-Er Chen . Recent advances in remote C(sp3)–H functionalization via chelating group-assisted metal-catalyzed chain-walking reaction. Chinese Chemical Letters, 2024, 35(11): 109647-. doi: 10.1016/j.cclet.2024.109647

    11. [11]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    12. [12]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenQiang SunShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoLi Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100

    13. [13]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    14. [14]

      Wenying CuiZhetong JinWentao FuChengshuo Shen . Flag-hinge-like highly luminescent chiral nanographenes with twist geometry. Chinese Chemical Letters, 2024, 35(11): 109667-. doi: 10.1016/j.cclet.2024.109667

    15. [15]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    16. [16]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    17. [17]

      Mengfan ZhangLingyan LiuPeng WeiWei FengTao Yi . A proximity tagging strategy utilizing an activated aldehyde group as the active site. Chinese Chemical Letters, 2025, 36(4): 110127-. doi: 10.1016/j.cclet.2024.110127

    18. [18]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    19. [19]

      Chao LiuChao JiaShi-Xian GanQiao-Yan QiGuo-Fang JiangXin Zhao . A luminescent one-dimensional covalent organic framework for organic arsenic sensing in water. Chinese Chemical Letters, 2024, 35(11): 109750-. doi: 10.1016/j.cclet.2024.109750

    20. [20]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

Metrics
  • PDF Downloads(2)
  • Abstract views(541)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return