Citation: Hao-Sen LIAO, Jun-Yi GAN, Xin XIA, Yong-Xu HU, Dong-Dong XIE, Dong-Yu ZHANG, Xiao LI. Synthesis of Fluorinated Diphenylbenzimidazole Iridium Complexes Based on Different Auxiliary Ligands and Solution-Processed Electroluminescent Devices[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 399-406. doi: 10.11862/CJIC.2022.052 shu

Synthesis of Fluorinated Diphenylbenzimidazole Iridium Complexes Based on Different Auxiliary Ligands and Solution-Processed Electroluminescent Devices

  • Corresponding author: Xiao LI, lixiao@ustl.edu.cn
  • Received Date: 13 September 2021
    Revised Date: 30 November 2021

Figures(6)

  • Nine benzimidazole-iridium(Ⅲ) complexes Ir-1a-Ir-3c were designed and synthesized by using fluorinated diphenylbenzimidazole derivatives as the main ligands and acetylacetone (corresponding complexes: Ir-1a-Ir-3a), 2-pyridine carboxylic acid (corresponding complexes: Ir-1b-Ir-3b), and 2-(5-trifluoromethyl-2H-[1,2,4]triazol-3-yl)-pyridine (tftp, corresponding complexes: Ir-1c-Ir-3c) as the auxiliary ligands, respectively. The effects of the degree of fluorination and different auxiliary ligands on the photophysical properties of the corresponding iridium complexes were investigated. The maximum emission wavelengths of the nine complexes were located in a range of 487-502 nm, showing green to blue-green phosphorescent emission. The largest blue shift was observed for the complexes based on tftp as an auxiliary ligand, especially for Ir-1c compared to Ir-1a with a blue shift of 17 nm. The nine complexes showed excellent photoluminescence efficiencies of 52%-87%. Furthermore, all iridium(Ⅲ) complexes exhibited good thermal stability, and the thermal decomposition temperatures were 313-390 ℃ (5% weight loss). Four iridium complexes of Ir-1c, Ir-2c, Ir-3c, and Ir-2b were selected for spin-coated electroluminescent devices with a doping concentration of 9%. The results show that the change of the primary and secondary ligands has a large effect on the luminescent color and luminescent efficiency of the light-emitting diodes. The Ir-3c-doped spin-coated devices had the highest device efficiency with an external quantum efficiency of 10.2%, a current efficiency of up to 30.3 cd·A-1, and a maximum power efficiency of 14.7 lm·W-1.
  • 加载中
    1. [1]

      HUANG W, MI B X, GAO Z Q. Organic Electronics. Beijing: Science Press, 2011: 267-268

    2. [2]

      Baldo M A, O'Brien D F, You Y, Shoustikov A, Sibley S, Thompson M E, Forrest S R. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices[J]. Nature, 1998,395(6698):151-154. doi: 10.1038/25954

    3. [3]

      LI H Y, HUANG Y C, LI Z B, GUO H Q, YANG X, YANG T T, LU A D. Synthesis and Electroluminescence of a Red Iridium Complex[J]. Chinese J. Inorg. Chem., 2018,34(12):2211-2218. doi: 10.11862/CJIC.2018.238 

    4. [4]

      Ding L, Zang C X, Wen L L, Shan G G, Gao Y, Sun H Z, Xie W F, Su Z M. High-Performance and Stable Warm White OLEDs Based on Orange Iridium (Ⅲ) Phosphors Modified with Simple Alkyl Groups[J]. Organometallics, 2020,39(18):3384-3393. doi: 10.1021/acs.organomet.0c00472

    5. [5]

      Luo X F, Qu Z Z, Han H B, Su J, Yan Z P, Zhang X M, Tong J J, Zheng Y X, Zuo J L. Carbazole-Based Iridium(Ⅲ) Complexes for Electrophosphorescence with EQE of 32[J]. 2% and Low Efficiency Roll-Off. Adv. Opt. Mater., 2020,9(3)2001390.

    6. [6]

      Chen Z Q, Bian Z Q, Huang C H. Functional Ir Complexes and Their Application[J]. Adv. Mater., 2010,22(13):1534-1539. doi: 10.1002/adma.200903233

    7. [7]

      Chen S N, Gai X, Liang J, Ye K Q, Liu Y, Wang Y. Highly Efficient Phosphorescent Organic Light-Emitting Diodes Based on Novel Bipolar Iridium Complexes with Easily-Tuned Emission Colors by Adjusting Fluorine Substitution on Phenylpyridine Ligands[J]. J. Mater. Chem. C, 2021,9(26):8329-8336. doi: 10.1039/D1TC01498F

    8. [8]

      Hu Y X, Xia X, He W Z, Tang Z J, Lv Y L, Li X, Zhang D Y. Recent Developments in Benzothiazole-Based Iridium(Ⅲ) Complexes for Application in OLEDs as Electrophosphorescent Emitters[J]. Org. Electron., 2019,66:126-135. doi: 10.1016/j.orgel.2018.12.029

    9. [9]

      Rai V K, Nhshiura M, Takimoto M, Zhao S S, Liu Y, Hou Z M. Biscyclometalated Iridium(Ⅲ) Complexes Bearing Ancillary Guanidinate Ligands. Synthesis, Structure, and Highly Efficient Electroluminescence. Inorg.[J]. Inorg. Chem., 2012,51(2):822-835. doi: 10.1021/ic201217a

    10. [10]

      Monti F, Kessler F, Delgado M, Frey J, Bazzanini F, Accorsi G, Armaroli N, Bolink H J, Orti E, Scopelliti R, Nazeeruddin M K, Baranoff E. Charged Bis-cyclometalated Iridium(Ⅲ) Complexes with Carbene-Based Ancillary Ligands[J]. Inorg. Chem., 2013,52(18):10292-10305. doi: 10.1021/ic400600d

    11. [11]

      Sahin C, Goren A, Varlikli C. Synthesis, Characterization and Photophysical Properties of Iridium Complexes with Amidinate Ligands[J]. J. Organomet. Chem., 2014,772-773:68-78. doi: 10.1016/j.jorganchem.2014.08.031

    12. [12]

      Kang D M, Kang J W, Park J W, Jung S O, Lee S H, Park H D, Kim Y H, Shin S C, Kim J J, Kwon S K. Iridium Complexes with Cyclometalated 2-Cycloalkenyl-Pyridine Ligands as Highly Efficient Emitters for Organic Light-Emitting Diodes[J]. Adv. Mater., 2008,20(10):2003-2007. doi: 10.1002/adma.200702558

    13. [13]

      Xiao L X, Chen Z J, Qu B, Luo J X, Kong S, Gong Q H, Kido J J. Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices[J]. Adv. Mater., 2011,23(8):926-952. doi: 10.1002/adma.201003128

    14. [14]

      Chen X W, Liao J L, Liang Y M, Ahmed M O, Tseng H E, Chen S A. High-Efficiency Red-Light Emission from Polyfluorenes Grafted with Cyclometalated Iridium Complexes and Charge Transport Moiety[J]. J. Am. Chem. Soc., 2003,125(3):636-637.

    15. [15]

      Lee S H, Kim S O, Shin H, Yun H J, Yang K, Kwon S K, Kim J J, Kim Y H. Deep-Blue Phosphorescence from Perfluoro Carbonyl-Substituted Iridium Complexes[J]. J. Am. Chem. Soc., 2013,135(38):14321-14328.

    16. [16]

      Miao Y Q, Tao P, Gao Long, Li X L, Wei L W, Liu S J, Wang H, Xu B S, Zhao Q. Highly Efficient Chlorine Functionalized Blue Iridium(Ⅲ) Phosphors for Blue and White Phosphorescent Organic Light-Emitting Diodes with External Quantum Efficiency Exceeding 20%[J]. J. Mater. Chem. C, 2018,6(25):6656-6665.

    17. [17]

      Sun P, Wang K X, Zhao B, Yang T T, Xu H X, Miao Y Q, Wang H, Xu B S. Blue-Emitting Ir(Ⅲ) Complexes Using Fluorinated Bipyridyl as Main Ligand and 1, 2, 4-Triazol as Ancillary Ligand: Syntheses, Photophysical Properties and Performances in Devices[J]. Tetrahedron, 2016,72(50):8335-8341.

    18. [18]

      Mao H T, Zang C X, Wen L L, Shan G G, Sun H Z, Xie W F, Su Z M. Ir(Ⅲ) Phosphors Modified with Fluorine Atoms in Pyridine-1, 2, 4-triazolyl Ligands for Efficient OLEDs Possessing Low-Efficiency Roll-Off[J]. Organometallics, 2016,35(22):3870-3877.

    19. [19]

      Kang H J, Lee K H, Lee S J, Seo J H, Kim Y K, Yoon S S. Highly Efficient Red Phosphorescent OLEDs Based on Ir(Ⅲ) Complexes with Fluorine-Substituted Benzoylphenylpyridine Ligand[J]. Bull. Korean Chem. Soc., 2010,31(12):3711-3717.

    20. [20]

      Kessler F, Watanabe Y, Sasabe H, Katagiri H, Nazeeruddin M K, Gratzel M, Kido J J. High-Performance Pure Blue Phosphorescent OLED Using a Novel Bis-heteroleptic Iridium(Ⅲ) Complex with Fluorinated Bipyridyl Ligands[J]. J. Mater. Chem. C, 2013,1(6):1070-1075.

    21. [21]

      Kim J B, Han S H, Yang K, Kwon S K, Kim J J, Kim Y H. Highly Efficient Deep-Blue Phosphorescence from Heptafluoropropyl-Substituted Iridium Complexes[J]. Chem. Commun., 2015,51(1):58-61.

    22. [22]

      Xu H X, Wang F, Wang K X, Sun P, Li J, Yang T T, Wang H, Xu B S. Two Novel Bipolar Ir(Ⅲ) Complexes Based on 9-(4-(Pyridin-2-yl) phenyl)-9H-carbazole and N-Heterocyclic Ligand[J]. Dyes Pigm., 2017,146:316-322.

    23. [23]

      Zhao J H, Hu Y X, Dong Y, Xia X, Chi H J, Xiao G Y, Li X, Zhang D Y. Novel Bluish Green Benzimidazole-Based Iridium(Ⅲ) Complexes for Highly Efficient Phosphorescent Organic Light-Emitting Diodes[J]. New J. Chem., 2017,41(5):1973-1979.

    24. [24]

      LIU H M, ZHENG C J, HE J, ZHANG X H. High Efficient Solution Processed Small Molecular Phosphorescent Organic Light-Emitting Diodes[J]. Imaging Science and Photochemistry, 2008,26(1):8-15.  

  • 加载中
    1. [1]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    5. [5]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    6. [6]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    7. [7]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    8. [8]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    9. [9]

      Xiaojun Wu Kai Hu Faqiong Zhao . Laying the Groundwork for General Chemistry Experiment Teaching: Exploration and Summary of Assisting Experiment Preparatory Work through Online and Offline Integration. University Chemistry, 2024, 39(8): 23-27. doi: 10.3866/PKU.DXHX202312052

    10. [10]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    11. [11]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    12. [12]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    13. [13]

      Wei Li Ze Chang Meihui Yu Ying Zhang . Curriculum Ideological and Political Design of Piezoelectricity Measurement Experiments of Coordination Compounds. University Chemistry, 2024, 39(2): 77-82. doi: 10.3866/PKU.DXHX202308004

    14. [14]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    15. [15]

      Cunling Ye Xitong Zhao Hongfang Wang Zhike Wang . A Formula for the Calculation of Complex Concentrations Arising from Side Reactions and Its Applications. University Chemistry, 2024, 39(4): 382-386. doi: 10.3866/PKU.DXHX202310043

    16. [16]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Cheng Rong Jiang Jiang Xinyu Zheng . Constructivism and Deconstructivism in General Chemistry Teaching: Taking the Teaching of Colloidal Solutions as an Example. University Chemistry, 2024, 39(2): 292-297. doi: 10.3866/PKU.DXHX202308035

    19. [19]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

    20. [20]

      Xinxue Li . The Application of Reverse Thinking in Teaching of Boiling Point Elevation and Freezing Point Depression of Dilute Solutions in General Chemistry. University Chemistry, 2024, 39(11): 359-364. doi: 10.3866/PKU.DXHX202401075

Metrics
  • PDF Downloads(8)
  • Abstract views(684)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return