In-Situ Synthesis and Performance of Oxygen Vacancy-Rich BiOCl Photocatalytic Material Derived from Bismuth-Based Glass
- Corresponding author: Tian-Yi XIE, xietianyi@mail.sic.ac.cn Hui-Xing LIN, huixinglin@mail.sic.ac.cn
Citation:
Wen-Jing DONG, Hai-Shen REN, Tian-Yi XIE, Hui-Xing LIN. In-Situ Synthesis and Performance of Oxygen Vacancy-Rich BiOCl Photocatalytic Material Derived from Bismuth-Based Glass[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(3): 501-509.
doi:
10.11862/CJIC.2022.047
光催化作为解决环境和能源危机最有前景的技术之一,能够将低密度的太阳能转化为高密度的化学能,并且能够通过光催化反应分解各种污染物[1-3]。相比传统用于水污染治理的技术,如吸附、生物降解以及高温焚烧等,光催化具有价格低廉、不产生二次污染、反应条件温和等优势[5-9]。近年来,由特定的[Bi2O2]2+层和互层离子或基团组成的氯氧化铋(BiOCl)具有的化学稳定性、独特的层结构和易于合成的特点使其备受关注[10],但其带隙能宽(约3.5 eV),只有在紫外光(λ < 400 nm)条件下才能被激发,限制了其应用[11-16]。因此,如何提高BiOCl的可见光吸收范围成为研究的难点与热点。
光催化材料的能带结构决定了其光吸收波长范围,通过引入氧空位(OV)可以有效调控能隙带宽与电子-空穴的分离效率,从而提高材料在可见光范围内的催化效率[17-18]。研究表明含有丰富OV的BiOCl纳米片在高达500 nm的波长下表现出出色的全氟辛酸(PFOA)降解率。随着制备过程中碱源的改变,BiOCl纳米片中OV的比例从0.573增加到0.981,BiOCl对PFOA降解和脱氟的光催化性能提高了3~4倍[19]。
由于玻璃采用高温-淬冷方法,保留了高温阶段的无定形结构,该结构中存在大量的非桥氧;铋玻璃相比硅玻璃具有更长的Bi—O键,因此具有更加松散的网络结构,可能形成的OV也更多。基于这个思路,我们以铋玻璃作为铋源,初次通过直接的盐酸腐蚀法将玻璃中的氧缺陷引入到BiOCl材料。并且通过添加不同网络外体组分,研究玻璃网络结构的破坏对BiOCl材料的OV浓度的影响。
试剂包括氧化铋(中国医药集团有限公司)、硼酸(BOR Mining Chemical Company,俄罗斯)、氧化锌(安徽省黄山县锦华氧化锌厂)、碳酸锶(上海红蝶化工有限公司)、碳酸钠(上海欧金实业有限公司)和盐酸(阿拉丁)。
我们在Bi2O3-B2O3-ZnO (BBZ)玻璃的基础上加入了2种网络外体SrO和Na2O组分,原料分别来源于Na2CO3和SrCO3,玻璃组成设计如表 1所示。
Sample | Molar fraction/% | ||||
Bi2O3 | B2O3 | ZnO | SrO | Na2O | |
BBZ | 40 | 30 | 30 | — | — |
BBZSr | 40 | 30 | 20 | 10 | — |
BBZSN | 40 | 30 | 10 | 10 | 10 |
铋玻璃的制备采用传统的熔融淬冷方法。分别称取表 1中各组分对应的原料,在球磨机上混合均匀后900 ℃熔融45 min得到均匀玻璃液,然后再进行急冷得到玻璃碎片,研磨玻璃碎片得到铋玻璃粉。
采用一步的酸腐蚀法制备BiOCl材料。分别将5 g BBZ、BBZSr和BBZSN玻璃粉加入100 mL 6% 的HCl溶液中搅拌2 h得到产物。将所得产物用蒸馏水和乙醇洗涤数次,100 ℃干燥过夜,分别制得BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN粉体。
通过X射线粉末衍射仪(XRD,德国,Bruker D8 ADVANCE)对样品进行物相分析,电压40 kV,电流40 mA,扫描范围10° ~80° (2θ),靶材Cu Kα,波长0.154 06 nm。通过FEIVeriosG4型扫描电子显微镜(SEM,工作电压3.0 kV)及JEM-2010型透射电子显微镜(TEM,工作电压200 kV)观察样品的微观形貌。采用傅里叶变换红外光谱仪(FT-IR)和拉曼光谱仪(Raman)表征材料的化学组分。通过紫外可见光谱仪(Shimadzu UV-3600)测定样品的紫外可见漫反射(UV-Vis DRS)谱图,扫描范围为300~800 nm。通过电子顺磁共振(EPR)对材料光激发下的活性基团进行表征。使用荧光光谱仪(PL,FLS980)对材料进行光致发光测试。
通过RhB(10 mg·L-1)在紫外光和可见光照射下的光催化分解实验来评估BiOCl材料的光催化活性。使用具有400 nm截止滤光片和200~400 nm石英滤光片的300 W氙灯分别获得可见光和紫外光。在光催化实验中,将10 mg BiOCl光催化剂加入100 mL RhB溶液中并置于暗处搅拌,达到吸附-脱附平衡后再进行照射。在给定时间后,取3 mL混合物离心以除去BiOCl材料。根据RhB在553 nm处的吸光度[20-22],通过紫外分光光度计分析确定RhB浓度。
由图 1a可知,所有铋玻璃的XRD图呈现出显著的玻璃衍射特征,表明所制备的玻璃成玻性良好。从图 1b的铋玻璃的FT-IR谱图可知,玻璃的吸收峰出现在520、710、920、1 000、1 180和1 280 cm-1附近,其中,710 cm-1处的吸收峰强度随玻璃组分的增加不断增大,表明[BO4]四面体逐渐转变为[BO3]三角体[23]。另外,从拉曼光谱(图 1c)中可以看出,铋玻璃的特征峰主要集中在128、416、583、722、924、1 250 cm-1。从BBZ玻璃到BBZSN玻璃,416和583 cm-1处的峰强度明显增强,表明[BiO6]八面体向[BiO3]三角体转变[24]。结合红外光谱和拉曼光谱分析,引入SrO和Na2O作为玻璃网络外体氧化物,增加了玻璃体系游离氧的含量,使玻璃的结构更松散,加入的网络外体更多,玻璃的结构破坏就越严重。因此,与BBZ和BBZSr玻璃相比,BBZSN具有最松散的网络结构,可能引起的氧缺陷也更多。
SEM图显示了所制备的BiOCl光催化剂都呈现出纳米片形状,由基础玻璃BBZ合成的BiOCl-BBZ材料具有较大的片层结构(图 2a),在引入SrO后,BiOCl-BBZSr则呈现不规则的团聚结构(图 2b),在随后的网络外体Na2O的添加,更大程度地对玻璃的骨架结构进行破坏,使得所制备的BiOCl-BBZSN材料具有更小的纳米碎片团聚结构(图 2c)。
通过XRD分析确认样品的相纯度和结晶度,结果如图 3所示。由图可知,所有样品的XRD峰均可以很好地对应四方相BiOCl(PDF No.06-0249),晶格参数a=0.389 1 nm和c=0.736 9 nm。图中未观察到杂质峰,表明所制备的样品纯度高。
为了进一步了解样品的微观结构,我们对BiOCl-BBZSN进行了TEM分析,如图 4a所示。高分辨率透射电子显微镜(HRTEM,图 4b)揭示了纳米片的高度结晶性和清晰的晶格条纹,晶格间距为0.275 nm,对应BiOCl(110)面。插图中的选区电子衍射(SAED)图案中标出的2组相邻点之间的夹角为45°,与BiOCl光催化剂的(100)和(110)晶面夹角的理论值一致[25-26],可以索引到[001]区域轴,表明BiOCl-BBZSN的暴露面是(001)面。
为了探索BiOCl光催化剂中OV的存在,对其进行了EPR测试。图 5a、5c显示了由3种不同的铋玻璃制备的BiOCl光催化剂的OV。其中,BiOCl-BBZSN在黑暗和可见光照条件下都表现出最强的OV信号。此外,比较了BiOCl-BBZSN光催化剂在黑暗和光照条件下的差异,如图 5b所示,其OV信号没有显著变化,表明OV大部分来源于光催化材料本身。为了进一步探索BiOCl光催化剂OV的来源,我们还对原始铋玻璃进行了OV表征,如图 5d所示,3种铋玻璃在黑暗条件下g=2.003处也显示出强氧信号,证明制备的BiOCl光催化剂通过简单的一步化学反应方法保留了玻璃中的氧缺陷。不难看出,BBZSN玻璃具有最强的OV信号,这可能是其松散的网络结构导致了更多的氧缺陷,这也是BBZSN玻璃制备的BiOCl-BBZSN光催化剂OV浓度最高的原因。另外,对盐酸刻蚀前后的BBZSN玻璃和BiOCl-BBZSN的氧缺陷浓度进行对比分析发现(图 5e),在黑暗条件下,BiOCl材料的OV峰强几乎与原始铋玻璃的相同,这进一步表明BiOCl-BBZSN材料的OV由BBZSN玻璃原位引入。
众所周知,OV的作用之一是调节光催化的带隙结构[27-28]。图 6a显示了所制备的BiOCl光催化的吸收边与BiOCl-BBZ、BiOCl-BBZSr相比,BiOCl-BBZSN的吸收带边缘发生红移现象。图 6b显示了BiOCl光催化剂带隙能(Eg)的变化。值得注意的是,BiOCl-BBZSN的带隙能(2.95 eV)比其他2个样品更窄,表明OV的存在可以降低带隙值以吸收更多可见光。为了进一步显示光催化材料的导带和价带的位置,采用VB-XPS测试所制备样品的VB(价带)状态总密度。由图 6c可知,所得的BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN的价带位置(EVB)分别为2.49、2.62和2.72 eV,另外通过公式:ECB=Eg-EVB计算了光催化材料的导带位置(ECB),光催化材料的能带结构如图 6d所示。光催化剂在降解染料的过程中需要超氧自由基(·O2-)、羟基自由基(·OH)和空穴等活性物质,而价带位置越低,氧化性越强,越有利于活性基团的产生和对染料的氧化[29]。BiOCl-BBZSN材料具有比其他2个样品更低的价带位置,因此可以产生更多的氧活性物质,提高其降解RhB染料的能力。
通过降解实验进一步研究了OV对光催化性能的影响。暗箱处理30 min以测试样品对染料的吸附能力,如图 7所示,BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN对染料的吸附率分别为7.12%、8.23%和12.35%。在紫外光照射下,BiOCl-BBZSN、BiOCl-BBZSr和BiOCl-BBZ的RhB降解率分别达到95.7% (35 min)、95.3%(40 min)和93.5%(60 min),表明OV对可见光下光催化材料的降解有较大影响。所制备的BiOCl在可见光下仍具有对RhB染料的降解能力,这可部分归因于染料敏化作用。在可见光下照射100 min时,BiOCl-BBZSN的降解率可达到93.1%,而BiOCl-BBZ和BiOCl-BBZSr分别只有72.3% 和54.4%,这可归因于丰富的OV调整了带隙,增强了材料对可见光的吸收。此外,对不添加光催化剂的RhB染料进行光降解实验发现,在紫外和可见光下染料的浓度没有明显的变化,说明染料的降解是源于样品的光降解作用。OV作为捕获电子的活性位点,O2和H2O分子可以在OV处与光生电子反应产生活性氧(ROS)。如图 8a、8b所示,在可见光照下观察到的EPR信号对应DMPO-·O2-和DMPO-·OH,其中BiOCl-BBZSN的ROS(·O2-、·OH)浓度最高,进一步说明BiOCl-BBZSN具有最好的光催化性能。
光诱导载流子的分离和迁移效率是光催化降解的重要因素,其主要通过瞬态光电流响应(I-t)、电化学阻抗(EIS)和光致发光光谱(PL)表征。一般认为光电流密度越高,电子-空穴对分离效率越高[30]。通过考察不同催化剂在可见光照条件下产生的光电流强度,间接说明催化剂的载流子分离效率。实验结果如图 9a所示,BiOCl-BBZSN作为光电极所产生的光电流强度约为0.2 μA·cm-2,分别约为BiOCl-BBZSr和BiOCl-BBZ的2倍和6倍。这些研究结果进一步说明了富氧空位的引入提高了BiOCl-BBZSN中光生载流子的分离迁移效率,有助于光催化活性的提高。此外,由图 9b可知,与BiOCl-BBZ和BiOCl-BBZSr光催化剂相比,BiOCl-BBZSN具有更小的EIS半径,这意味着载流子迁移到表面的阻力更小。另外,使用PL谱图来确认电荷复合率(图 9c),较低的PL强度和较长的寿命与较低的电荷载流子复合率有关。BiOCl-BBZSN在468 nm附近的发光强度明显最弱,表明由BBZSN铋玻璃制备的BiOCl具有更丰富的OV,可以极大地促进光诱导载流子的空间分离,减少电子-空穴对的复合,从而进一步提高光催化剂的降解性能。
采用简单的一步化学反应法制备富氧空位的BiOCl光催化剂。实验结果表明,光催化剂的OV主要源于玻璃物种的原始氧缺陷。其中,用BBZSN玻璃制备的BiOCl-BBZSN光催化剂染料的降解率最高,这是因为BBZSN玻璃中引入了更多的网络外体,使玻璃结构最松散,引起更多的氧缺陷。富氧缺陷的存在调节了BiOCl材料的能带结构并且通过捕获电子加速了电子-空穴对的分离,从而改善材料的光催化降解性能。该研究在制备方法和所用铋原料方面均具有创新性,可为高效光催化剂的工业化大规模制备作出贡献。
Li G B, Huang S Q, Zhu N W, Yuan H P, Ge D D, Wei Y C. Defect-Rich Heterojunction Photocatalyst Originated from the Removal of Chloride Ions and Its Degradation Mechanism of Norfloxacin[J]. Chem. Eng. J., 2021,421:127852-127864. doi: 10.1016/j.cej.2020.127852
Kuila A, Saravanan P, Bahnemann D, Wang C. Novel Ag Decorated, BiOCl Surface Doped AgVO3 Nanobelt Ternary Composite with Z-Scheme Homojunction-Heterojunction Interface for High Prolific Photo Switching, Quantum Efficiency and Hole Mediated Photocatalysis[J]. Appl. Catal. B, 2021,293(15):120224-120240.
Zhang L, Li Y H, Li Q, Fan J J, Carabineiro S, Lv K. Recent Advances on Bismuth-Based Photocatalysts: Strategies and Mechanisms[J]. Chem. Eng. J., 2021,419(4):129484-129506.
Huang Y W, Zhang N, Wu Z J, Xie X Q. Artificial Nitrogen Fixation over Bismuth-Based Photocatalysts: Fundamentals and Future Perspectives[J]. J. Mater. Chem. A, 2020,8(10):4978-4995. doi: 10.1039/C9TA13589H
Wang H X, Liao B, Lu T, Ai Y L, Liu G. Enhanced Visible-Light Photocatalytic Degradation of Tetracycline by a Novel Hollow BiOCl@CeO2 Heterostructured Microspheres: Structural Characterization and Reac-tion Mechanism[J]. J. Hazard. Mater., 2020,385:121552-121561. doi: 10.1016/j.jhazmat.2019.121552
Deng F, Luo Y B, Xia B H, Luo X B, Luo S L, Dionysiou D. Efficient Toxicity Elimination of Aqueous Cr (Ⅳ) by Positively-Charged BiOClxI1-x, BiOBrxI1-x and BiOClxBr1-x Solid Solution with Internal Hole-Scavenging Capacity via the Synergy of Adsorption and Photocatalytic Reduction[J]. J. Hazard. Mater., 2020,383(5):121127-121140.
Eshaq G, Wang S B, Sun H Q, Sillanpää M. Core/Shell FeVO4@BiOCl Heterojunction as a Durable Heterogeneous Fenton Catalyst for the Efficient Sonophotocatalytic Degradation of p-Nitrophenol[J]. Sep. Purif. Technol., 2020,231(16):115915-115931.
Huang S Q, Li L, Zhu N W, Lou Z Y, Liu W Q, Cheng J H, Wang H M, Luo P X, Wang H. Removal and Recovery of Chloride Ions in Concentrated Leachate by Bi (Ⅲ) Containing Oxides Quantum Dots/Two-Dimensional Flakes[J]. J. Hazard. Mater., 2020,382(15):121041-121051.
Wang B, Di J, Lu L, Yan S C, Liu G P, Ye Y Z. Sacrificing Ionic Liquid-Assisted Anchoring of Carbonized Polymer Dots on Perovskite-like PbBiO2Br for Robust CO2 Photoreduction[J]. Appl. Catal. B, 2019,254(5):551-559.
Fan K H, Yu C, Chen S T, Lan S Y, Zhu M S. Metallic Bi Self-Deposited BiOCl Promoted Piezocatalytic Removal of Carbamazepine[J]. Surf. Interfaces, 2021,26:101335-101343. doi: 10.1016/j.surfin.2021.101335
Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Yubuta K. Novel g-C3N4 Nanosheets/CDs/BiOCl Photocatalysts with Exceptional Activity under Visible Light[J]. J. Am. Ceram. Soc., 2019,102(3):1435-1453. doi: 10.1111/jace.15959
Li R J, Luan Q J, Dong C, Dong W J, Tang W, Wang G, Lu Y F. Light-Facilitated Structure Reconstruction on Self-Optimized Photocatalyst TiO2@BiOCl for Selectively Efficient Conversion of CO2 to CH4[J]. Appl. Catal. B, 2021,286(5):119832-119843.
Mei J, Tao Y, Gao C, Zhu Q, Zhang H Y, Yu J, Fang Z, Xu H, Wang Y H, Li G S. Photo-Induced Dye-Sensitized BiPO4/BiOCl System for Stably Treating Persistent Organic Pollutants[J]. Appl. Catal. B, 2021,285(15):119841-119852.
Wu S S, Yu X, Zhang J L, Zhang Y M, Zhu Y, Zhu M S. Construction of BiOCl/CuBi2O4 S-Scheme Heterojunction with Oxygen Vacancy for Enhanced Photocatalytic Diclofenac Degradation and Nitric Oxide Removal[J]. Chem. Eng. J., 2021,411(1):128555-128567.
Hussain M, Mehmood R, Azhar U, Wang J N, Song L H. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅵ) Reduction[J]. ACS Appl. Nano Mater., 2021,4(4):4037-4047. doi: 10.1021/acsanm.1c00380
Shen T, Shi X K, Guo J X, Li J, Yuan S D. Photocatalytic Removal of NO by Light-Driven Mn3O4/BiOCl Heterojunction Photocatalyst: Optimization and Mechanism[J]. Chem. Eng. J., 2021,408(15):128014-128028.
Shahid M, Mehmood R, Athar M, Hussain J, Wei Y W, Khaliq A. BiOCl Nanoplates Doped with Fe3+ Ions for the Visible-Light Degradation of Aqueous Pollutants[J]. ACS Appl. Nano Mater., 2020,4(1):746-758.
Zhan G M, Li j, Hu Y, Zhao S X, Gao S Y, Jia F L, Zhang L Z. The Surface Hydroxyl and Oxygen Vacancy Dependent Cr (Ⅳ) Adsorption Performance of BiOCl[J]. Environ. Sci. Nano, 2020,7(5):1454-1463. doi: 10.1039/D0EN00108B
Song Z, Dong X L, Fang J D, Xiong G H, Wang N, Tang X M. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis[J]. J. Hazard. Mater., 2019,377(5):371-380.
Jiang Z, Xiao C, Yin X Y, Xu L G, Liu C L, Wang H L. Facile Preparation of a Novel Bi24O31Br10/Nano-ZnO Composite Photocatalyst with Enhanced Visible Light Photocatalytic Ability[J]. Ceram. Int., 2020,46(8):10771-10778. doi: 10.1016/j.ceramint.2020.01.087
Zhang Z J, Wang W Z, Shang M, Yin W Z. Photocatalytic Degradation of Rhodamine B and Phenol by Solution Combustion Synthesized BiVO4 Photocatalyst[J]. Catal. Commun., 2010,11(11):982-986. doi: 10.1016/j.catcom.2010.04.013
ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave-Induced Assembly of CuS@MoS2 Core-Shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chim. Sinica, 2020,78(9):961-969.
Hashimoto T, Shimoda Y, Nasu H, Ishihara A. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅳ) Reduction[J]. J. Am. Ceram. Soc., 2011,94(7):2061-2066. doi: 10.1111/j.1551-2916.2010.04383.x
Chen J Q, Li Y F, Miao W L, Lei Q, Li M Y. Dependence of Glass Transition on the Structure in Bi-B-Zn Oxide Glass[J]. J. Alloys Compd., 2018,742(25):151-158.
Ren Y H, Zou J H, Jing K Q, Liu Y Y, Guo B B, Song Y J, Yu Y, Wu L. Photocatalytic Synthesis of N-benzyleneamine from Benzylamine on Ultrathin BiOCl Nanosheets under Visible Light[J]. J. Catal., 2019,380:123-131. doi: 10.1016/j.jcat.2019.10.018
Hou J H, Dai D, Wei R, Wu X G, Wang X Z, Tahir M, Zou J J. Narrowing the Band Gap of BiOCl for the Hydroxyl Radical Generation of Photocatalysis under Visible Light[J]. ACS Sustainable Chem. Eng., 2019,7(19):16569-16576. doi: 10.1021/acssuschemeng.9b03885
Phasayavan W, Japa M, Pornsuwan S, Tantraviwat D, Kielar F. Oxygen-Deficient Bismuth Molybdate Nanocatalysts: Synergistic Effects in Boosting Photocatalytic Oxidative Coupling of Benzylamine and Mechanistic Insight[J]. J. Colloid Interface Sci., 2021,581(1):719-728.
Wei Z, Li W L, Hu J S, Ma X G, Zhu Y F. Interfacial Internal Electric Field and Oxygen Vacancies Synergistically Enhance Photocatlytic Performance of Bismuth Oxychloride[J]. J. Hazard. Mater., 2021,402(15):123470-123479.
Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M. Exploring Deep Effects of Atomic Vacancies on Activating CO2 Photoreduction via Rationally Designing Indium Oxide Photocatalysts[J]. Chem. Eng. J., 2021,422(15):129888-129897.
Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J. A Special Synthesis of BiOCl Photocatalyst for Efficient Pollutants Removal: New Insight into the Band Structure Regulation and Molecular Oxygen Activation[J]. Appl. Catal. B, 2019,256(5):117872-117881.
Li G B, Huang S Q, Zhu N W, Yuan H P, Ge D D, Wei Y C. Defect-Rich Heterojunction Photocatalyst Originated from the Removal of Chloride Ions and Its Degradation Mechanism of Norfloxacin[J]. Chem. Eng. J., 2021,421:127852-127864. doi: 10.1016/j.cej.2020.127852
Kuila A, Saravanan P, Bahnemann D, Wang C. Novel Ag Decorated, BiOCl Surface Doped AgVO3 Nanobelt Ternary Composite with Z-Scheme Homojunction-Heterojunction Interface for High Prolific Photo Switching, Quantum Efficiency and Hole Mediated Photocatalysis[J]. Appl. Catal. B, 2021,293(15):120224-120240.
Zhang L, Li Y H, Li Q, Fan J J, Carabineiro S, Lv K. Recent Advances on Bismuth-Based Photocatalysts: Strategies and Mechanisms[J]. Chem. Eng. J., 2021,419(4):129484-129506.
Huang Y W, Zhang N, Wu Z J, Xie X Q. Artificial Nitrogen Fixation over Bismuth-Based Photocatalysts: Fundamentals and Future Perspectives[J]. J. Mater. Chem. A, 2020,8(10):4978-4995. doi: 10.1039/C9TA13589H
Wang H X, Liao B, Lu T, Ai Y L, Liu G. Enhanced Visible-Light Photocatalytic Degradation of Tetracycline by a Novel Hollow BiOCl@CeO2 Heterostructured Microspheres: Structural Characterization and Reac-tion Mechanism[J]. J. Hazard. Mater., 2020,385:121552-121561. doi: 10.1016/j.jhazmat.2019.121552
Deng F, Luo Y B, Xia B H, Luo X B, Luo S L, Dionysiou D. Efficient Toxicity Elimination of Aqueous Cr (Ⅳ) by Positively-Charged BiOClxI1-x, BiOBrxI1-x and BiOClxBr1-x Solid Solution with Internal Hole-Scavenging Capacity via the Synergy of Adsorption and Photocatalytic Reduction[J]. J. Hazard. Mater., 2020,383(5):121127-121140.
Eshaq G, Wang S B, Sun H Q, Sillanpää M. Core/Shell FeVO4@BiOCl Heterojunction as a Durable Heterogeneous Fenton Catalyst for the Efficient Sonophotocatalytic Degradation of p-Nitrophenol[J]. Sep. Purif. Technol., 2020,231(16):115915-115931.
Huang S Q, Li L, Zhu N W, Lou Z Y, Liu W Q, Cheng J H, Wang H M, Luo P X, Wang H. Removal and Recovery of Chloride Ions in Concentrated Leachate by Bi (Ⅲ) Containing Oxides Quantum Dots/Two-Dimensional Flakes[J]. J. Hazard. Mater., 2020,382(15):121041-121051.
Wang B, Di J, Lu L, Yan S C, Liu G P, Ye Y Z. Sacrificing Ionic Liquid-Assisted Anchoring of Carbonized Polymer Dots on Perovskite-like PbBiO2Br for Robust CO2 Photoreduction[J]. Appl. Catal. B, 2019,254(5):551-559.
Fan K H, Yu C, Chen S T, Lan S Y, Zhu M S. Metallic Bi Self-Deposited BiOCl Promoted Piezocatalytic Removal of Carbamazepine[J]. Surf. Interfaces, 2021,26:101335-101343. doi: 10.1016/j.surfin.2021.101335
Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Yubuta K. Novel g-C3N4 Nanosheets/CDs/BiOCl Photocatalysts with Exceptional Activity under Visible Light[J]. J. Am. Ceram. Soc., 2019,102(3):1435-1453. doi: 10.1111/jace.15959
Li R J, Luan Q J, Dong C, Dong W J, Tang W, Wang G, Lu Y F. Light-Facilitated Structure Reconstruction on Self-Optimized Photocatalyst TiO2@BiOCl for Selectively Efficient Conversion of CO2 to CH4[J]. Appl. Catal. B, 2021,286(5):119832-119843.
Mei J, Tao Y, Gao C, Zhu Q, Zhang H Y, Yu J, Fang Z, Xu H, Wang Y H, Li G S. Photo-Induced Dye-Sensitized BiPO4/BiOCl System for Stably Treating Persistent Organic Pollutants[J]. Appl. Catal. B, 2021,285(15):119841-119852.
Wu S S, Yu X, Zhang J L, Zhang Y M, Zhu Y, Zhu M S. Construction of BiOCl/CuBi2O4 S-Scheme Heterojunction with Oxygen Vacancy for Enhanced Photocatalytic Diclofenac Degradation and Nitric Oxide Removal[J]. Chem. Eng. J., 2021,411(1):128555-128567.
Hussain M, Mehmood R, Azhar U, Wang J N, Song L H. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅵ) Reduction[J]. ACS Appl. Nano Mater., 2021,4(4):4037-4047. doi: 10.1021/acsanm.1c00380
Shen T, Shi X K, Guo J X, Li J, Yuan S D. Photocatalytic Removal of NO by Light-Driven Mn3O4/BiOCl Heterojunction Photocatalyst: Optimization and Mechanism[J]. Chem. Eng. J., 2021,408(15):128014-128028.
Shahid M, Mehmood R, Athar M, Hussain J, Wei Y W, Khaliq A. BiOCl Nanoplates Doped with Fe3+ Ions for the Visible-Light Degradation of Aqueous Pollutants[J]. ACS Appl. Nano Mater., 2020,4(1):746-758.
Zhan G M, Li j, Hu Y, Zhao S X, Gao S Y, Jia F L, Zhang L Z. The Surface Hydroxyl and Oxygen Vacancy Dependent Cr (Ⅳ) Adsorption Performance of BiOCl[J]. Environ. Sci. Nano, 2020,7(5):1454-1463. doi: 10.1039/D0EN00108B
Song Z, Dong X L, Fang J D, Xiong G H, Wang N, Tang X M. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis[J]. J. Hazard. Mater., 2019,377(5):371-380.
Jiang Z, Xiao C, Yin X Y, Xu L G, Liu C L, Wang H L. Facile Preparation of a Novel Bi24O31Br10/Nano-ZnO Composite Photocatalyst with Enhanced Visible Light Photocatalytic Ability[J]. Ceram. Int., 2020,46(8):10771-10778. doi: 10.1016/j.ceramint.2020.01.087
Zhang Z J, Wang W Z, Shang M, Yin W Z. Photocatalytic Degradation of Rhodamine B and Phenol by Solution Combustion Synthesized BiVO4 Photocatalyst[J]. Catal. Commun., 2010,11(11):982-986. doi: 10.1016/j.catcom.2010.04.013
ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave-Induced Assembly of CuS@MoS2 Core-Shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chim. Sinica, 2020,78(9):961-969.
Hashimoto T, Shimoda Y, Nasu H, Ishihara A. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅳ) Reduction[J]. J. Am. Ceram. Soc., 2011,94(7):2061-2066. doi: 10.1111/j.1551-2916.2010.04383.x
Chen J Q, Li Y F, Miao W L, Lei Q, Li M Y. Dependence of Glass Transition on the Structure in Bi-B-Zn Oxide Glass[J]. J. Alloys Compd., 2018,742(25):151-158.
Ren Y H, Zou J H, Jing K Q, Liu Y Y, Guo B B, Song Y J, Yu Y, Wu L. Photocatalytic Synthesis of N-benzyleneamine from Benzylamine on Ultrathin BiOCl Nanosheets under Visible Light[J]. J. Catal., 2019,380:123-131. doi: 10.1016/j.jcat.2019.10.018
Hou J H, Dai D, Wei R, Wu X G, Wang X Z, Tahir M, Zou J J. Narrowing the Band Gap of BiOCl for the Hydroxyl Radical Generation of Photocatalysis under Visible Light[J]. ACS Sustainable Chem. Eng., 2019,7(19):16569-16576. doi: 10.1021/acssuschemeng.9b03885
Phasayavan W, Japa M, Pornsuwan S, Tantraviwat D, Kielar F. Oxygen-Deficient Bismuth Molybdate Nanocatalysts: Synergistic Effects in Boosting Photocatalytic Oxidative Coupling of Benzylamine and Mechanistic Insight[J]. J. Colloid Interface Sci., 2021,581(1):719-728.
Wei Z, Li W L, Hu J S, Ma X G, Zhu Y F. Interfacial Internal Electric Field and Oxygen Vacancies Synergistically Enhance Photocatlytic Performance of Bismuth Oxychloride[J]. J. Hazard. Mater., 2021,402(15):123470-123479.
Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M. Exploring Deep Effects of Atomic Vacancies on Activating CO2 Photoreduction via Rationally Designing Indium Oxide Photocatalysts[J]. Chem. Eng. J., 2021,422(15):129888-129897.
Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J. A Special Synthesis of BiOCl Photocatalyst for Efficient Pollutants Removal: New Insight into the Band Structure Regulation and Molecular Oxygen Activation[J]. Appl. Catal. B, 2019,256(5):117872-117881.
Qinjin DAI , Shan FAN , Pengyang FAN , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Yong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Pengcheng Yan , Peng Wang , Jing Huang , Zhao Mo , Li Xu , Yun Chen , Yu Zhang , Zhichong Qi , Hui Xu , Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047
Ke Li , Chuang Liu , Jingping Li , Guohong Wang , Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Guoqiang Chen , Zixuan Zheng , Wei Zhong , Guohong Wang , Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Chunyan Yang , Qiuyu Rong , Fengyin Shi , Menghan Cao , Guie Li , Yanjun Xin , Wen Zhang , Guangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Inset in b: SAED pattern