Citation: Wen-Jing DONG, Hai-Shen REN, Tian-Yi XIE, Hui-Xing LIN. In-Situ Synthesis and Performance of Oxygen Vacancy-Rich BiOCl Photocatalytic Material Derived from Bismuth-Based Glass[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 501-509. doi: 10.11862/CJIC.2022.047 shu

In-Situ Synthesis and Performance of Oxygen Vacancy-Rich BiOCl Photocatalytic Material Derived from Bismuth-Based Glass

Figures(9)

  • Oxygen vacancies enact a vital role on the visible light absorption range and electron-hole separation efficiency of the photocatalytic material. Bismuth-based glass is rich in oxygen vacancy defects. BiOCl photocatalytic material was synthesized in-situ by hydrochloric acid corrosion of bismuth-based glass, and the influence of the outer body of the glass network on the oxygen vacancy concentration was studied. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) were used to characterize the structure, morphology, and oxygen vacancy concentration of the synthesized BiOCl material. The results showed that the number of oxygen vacancies of the Bi2O3-B2O3-ZnO bismuth-based glass increased with the increase of the external body composition of the network. The in-situ synthesized BiOCl will "inherit"a large number of oxygen vacancies in the glass. The degradation rate of rhodamine B was as high as 93.1% under visible light for 100 min.
  • 光催化作为解决环境和能源危机最有前景的技术之一,能够将低密度的太阳能转化为高密度的化学能,并且能够通过光催化反应分解各种污染物[1-3]。相比传统用于水污染治理的技术,如吸附、生物降解以及高温焚烧等,光催化具有价格低廉、不产生二次污染、反应条件温和等优势[5-9]。近年来,由特定的[Bi2O2]2+层和互层离子或基团组成的氯氧化铋(BiOCl)具有的化学稳定性、独特的层结构和易于合成的特点使其备受关注[10],但其带隙能宽(约3.5 eV),只有在紫外光(λ < 400 nm)条件下才能被激发,限制了其应用[11-16]。因此,如何提高BiOCl的可见光吸收范围成为研究的难点与热点。

    光催化材料的能带结构决定了其光吸收波长范围,通过引入氧空位(OV)可以有效调控能隙带宽与电子-空穴的分离效率,从而提高材料在可见光范围内的催化效率[17-18]。研究表明含有丰富OV的BiOCl纳米片在高达500 nm的波长下表现出出色的全氟辛酸(PFOA)降解率。随着制备过程中碱源的改变,BiOCl纳米片中OV的比例从0.573增加到0.981,BiOCl对PFOA降解和脱氟的光催化性能提高了3~4倍[19]

    由于玻璃采用高温-淬冷方法,保留了高温阶段的无定形结构,该结构中存在大量的非桥氧;铋玻璃相比硅玻璃具有更长的Bi—O键,因此具有更加松散的网络结构,可能形成的OV也更多。基于这个思路,我们以铋玻璃作为铋源,初次通过直接的盐酸腐蚀法将玻璃中的氧缺陷引入到BiOCl材料。并且通过添加不同网络外体组分,研究玻璃网络结构的破坏对BiOCl材料的OV浓度的影响。

    试剂包括氧化铋(中国医药集团有限公司)、硼酸(BOR Mining Chemical Company,俄罗斯)、氧化锌(安徽省黄山县锦华氧化锌厂)、碳酸锶(上海红蝶化工有限公司)、碳酸钠(上海欧金实业有限公司)和盐酸(阿拉丁)。

    我们在Bi2O3-B2O3-ZnO (BBZ)玻璃的基础上加入了2种网络外体SrO和Na2O组分,原料分别来源于Na2CO3和SrCO3,玻璃组成设计如表 1所示。

    表 1

    表 1  铋玻璃的主要成份及含量
    Table 1.  Main components and contents of bismuth glasses
    下载: 导出CSV
    Sample Molar fraction/%
    Bi2O3 B2O3 ZnO SrO Na2O
    BBZ 40 30 30
    BBZSr 40 30 20 10
    BBZSN 40 30 10 10 10

    铋玻璃的制备采用传统的熔融淬冷方法。分别称取表 1中各组分对应的原料,在球磨机上混合均匀后900 ℃熔融45 min得到均匀玻璃液,然后再进行急冷得到玻璃碎片,研磨玻璃碎片得到铋玻璃粉。

    采用一步的酸腐蚀法制备BiOCl材料。分别将5 g BBZ、BBZSr和BBZSN玻璃粉加入100 mL 6% 的HCl溶液中搅拌2 h得到产物。将所得产物用蒸馏水和乙醇洗涤数次,100 ℃干燥过夜,分别制得BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN粉体。

    通过X射线粉末衍射仪(XRD,德国,Bruker D8 ADVANCE)对样品进行物相分析,电压40 kV,电流40 mA,扫描范围10° ~80° (2θ),靶材Cu Kα,波长0.154 06 nm。通过FEIVeriosG4型扫描电子显微镜(SEM,工作电压3.0 kV)及JEM-2010型透射电子显微镜(TEM,工作电压200 kV)观察样品的微观形貌。采用傅里叶变换红外光谱仪(FT-IR)和拉曼光谱仪(Raman)表征材料的化学组分。通过紫外可见光谱仪(Shimadzu UV-3600)测定样品的紫外可见漫反射(UV-Vis DRS)谱图,扫描范围为300~800 nm。通过电子顺磁共振(EPR)对材料光激发下的活性基团进行表征。使用荧光光谱仪(PL,FLS980)对材料进行光致发光测试。

    通过RhB(10 mg·L-1)在紫外光和可见光照射下的光催化分解实验来评估BiOCl材料的光催化活性。使用具有400 nm截止滤光片和200~400 nm石英滤光片的300 W氙灯分别获得可见光和紫外光。在光催化实验中,将10 mg BiOCl光催化剂加入100 mL RhB溶液中并置于暗处搅拌,达到吸附-脱附平衡后再进行照射。在给定时间后,取3 mL混合物离心以除去BiOCl材料。根据RhB在553 nm处的吸光度[20-22],通过紫外分光光度计分析确定RhB浓度。

    图 1a可知,所有铋玻璃的XRD图呈现出显著的玻璃衍射特征,表明所制备的玻璃成玻性良好。从图 1b的铋玻璃的FT-IR谱图可知,玻璃的吸收峰出现在520、710、920、1 000、1 180和1 280 cm-1附近,其中,710 cm-1处的吸收峰强度随玻璃组分的增加不断增大,表明[BO4]四面体逐渐转变为[BO3]三角体[23]。另外,从拉曼光谱(图 1c)中可以看出,铋玻璃的特征峰主要集中在128、416、583、722、924、1 250 cm-1。从BBZ玻璃到BBZSN玻璃,416和583 cm-1处的峰强度明显增强,表明[BiO6]八面体向[BiO3]三角体转变[24]。结合红外光谱和拉曼光谱分析,引入SrO和Na2O作为玻璃网络外体氧化物,增加了玻璃体系游离氧的含量,使玻璃的结构更松散,加入的网络外体更多,玻璃的结构破坏就越严重。因此,与BBZ和BBZSr玻璃相比,BBZSN具有最松散的网络结构,可能引起的氧缺陷也更多。

    图 1

    图 1.  所制备的铋玻璃(a) XRD图、(b)FT-IR谱图和(c) Raman谱图
    Figure 1.  (a) XRD patterns, (b) FT-IR spectra, and (c) Raman spectra of as-prepared bismuth glasses

    SEM图显示了所制备的BiOCl光催化剂都呈现出纳米片形状,由基础玻璃BBZ合成的BiOCl-BBZ材料具有较大的片层结构(图 2a),在引入SrO后,BiOCl-BBZSr则呈现不规则的团聚结构(图 2b),在随后的网络外体Na2O的添加,更大程度地对玻璃的骨架结构进行破坏,使得所制备的BiOCl-BBZSN材料具有更小的纳米碎片团聚结构(图 2c)。

    图 2

    图 2.  (a) BiOCl-BBZ、(b) BiOCl-BBZSr和(c) BiOCl-BBZSN光催化剂的SEM图
    Figure 2.  SEM images of (a) BiOCl-BBZ, (b) BiOCl-BBZSr, and (c) BiOCl-BBZSN photocatalysts

    通过XRD分析确认样品的相纯度和结晶度,结果如图 3所示。由图可知,所有样品的XRD峰均可以很好地对应四方相BiOCl(PDF No.06-0249),晶格参数a=0.389 1 nm和c=0.736 9 nm。图中未观察到杂质峰,表明所制备的样品纯度高。

    图 3

    图 3.  所制备的BiOCl光催化剂的XRD图
    Figure 3.  XRD patterns of as-prepared BiOCl photocatalysts

    为了进一步了解样品的微观结构,我们对BiOCl-BBZSN进行了TEM分析,如图 4a所示。高分辨率透射电子显微镜(HRTEM,图 4b)揭示了纳米片的高度结晶性和清晰的晶格条纹,晶格间距为0.275 nm,对应BiOCl(110)面。插图中的选区电子衍射(SAED)图案中标出的2组相邻点之间的夹角为45°,与BiOCl光催化剂的(100)和(110)晶面夹角的理论值一致[25-26],可以索引到[001]区域轴,表明BiOCl-BBZSN的暴露面是(001)面。

    图 4

    图 4.  BiOCl-BBZSN的(a) TEM图和(b) HRTEM图
    Figure 4.  (a) TEM image and (b) HRTEM image of BiOCl-BBZSN

    Inset in b: SAED pattern

    为了探索BiOCl光催化剂中OV的存在,对其进行了EPR测试。图 5a5c显示了由3种不同的铋玻璃制备的BiOCl光催化剂的OV。其中,BiOCl-BBZSN在黑暗和可见光照条件下都表现出最强的OV信号。此外,比较了BiOCl-BBZSN光催化剂在黑暗和光照条件下的差异,如图 5b所示,其OV信号没有显著变化,表明OV大部分来源于光催化材料本身。为了进一步探索BiOCl光催化剂OV的来源,我们还对原始铋玻璃进行了OV表征,如图 5d所示,3种铋玻璃在黑暗条件下g=2.003处也显示出强氧信号,证明制备的BiOCl光催化剂通过简单的一步化学反应方法保留了玻璃中的氧缺陷。不难看出,BBZSN玻璃具有最强的OV信号,这可能是其松散的网络结构导致了更多的氧缺陷,这也是BBZSN玻璃制备的BiOCl-BBZSN光催化剂OV浓度最高的原因。另外,对盐酸刻蚀前后的BBZSN玻璃和BiOCl-BBZSN的氧缺陷浓度进行对比分析发现(图 5e),在黑暗条件下,BiOCl材料的OV峰强几乎与原始铋玻璃的相同,这进一步表明BiOCl-BBZSN材料的OV由BBZSN玻璃原位引入。

    图 5

    图 5.  样品在黑暗和可见光照下的EPR谱图
    Figure 5.  EPR spectra of the samples under dark and visible light

    众所周知,OV的作用之一是调节光催化的带隙结构[27-28]图 6a显示了所制备的BiOCl光催化的吸收边与BiOCl-BBZ、BiOCl-BBZSr相比,BiOCl-BBZSN的吸收带边缘发生红移现象。图 6b显示了BiOCl光催化剂带隙能(Eg)的变化。值得注意的是,BiOCl-BBZSN的带隙能(2.95 eV)比其他2个样品更窄,表明OV的存在可以降低带隙值以吸收更多可见光。为了进一步显示光催化材料的导带和价带的位置,采用VB-XPS测试所制备样品的VB(价带)状态总密度。由图 6c可知,所得的BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN的价带位置(EVB)分别为2.49、2.62和2.72 eV,另外通过公式:ECB=Eg-EVB计算了光催化材料的导带位置(ECB),光催化材料的能带结构如图 6d所示。光催化剂在降解染料的过程中需要超氧自由基(·O2-)、羟基自由基(·OH)和空穴等活性物质,而价带位置越低,氧化性越强,越有利于活性基团的产生和对染料的氧化[29]。BiOCl-BBZSN材料具有比其他2个样品更低的价带位置,因此可以产生更多的氧活性物质,提高其降解RhB染料的能力。

    图 6

    图 6.  样品的(a) UV-Vis漫反射光谱、(b) (αhν)1/2 vs 曲线、(c) VB-XPS谱图和(d) 带隙结构
    Figure 6.  (a) UV-Vis diffuse reflectance spectra, (b) curves of (αhν)1/2 vs , (c) VB-XPS spectra, and (d) band gap structures of the samples

    通过降解实验进一步研究了OV对光催化性能的影响。暗箱处理30 min以测试样品对染料的吸附能力,如图 7所示,BiOCl-BBZ、BiOCl-BBZSr和BiOCl-BBZSN对染料的吸附率分别为7.12%、8.23%和12.35%。在紫外光照射下,BiOCl-BBZSN、BiOCl-BBZSr和BiOCl-BBZ的RhB降解率分别达到95.7% (35 min)、95.3%(40 min)和93.5%(60 min),表明OV对可见光下光催化材料的降解有较大影响。所制备的BiOCl在可见光下仍具有对RhB染料的降解能力,这可部分归因于染料敏化作用。在可见光下照射100 min时,BiOCl-BBZSN的降解率可达到93.1%,而BiOCl-BBZ和BiOCl-BBZSr分别只有72.3% 和54.4%,这可归因于丰富的OV调整了带隙,增强了材料对可见光的吸收。此外,对不添加光催化剂的RhB染料进行光降解实验发现,在紫外和可见光下染料的浓度没有明显的变化,说明染料的降解是源于样品的光降解作用。OV作为捕获电子的活性位点,O2和H2O分子可以在OV处与光生电子反应产生活性氧(ROS)。如图 8a8b所示,在可见光照下观察到的EPR信号对应DMPO-·O2-和DMPO-·OH,其中BiOCl-BBZSN的ROS(·O2-、·OH)浓度最高,进一步说明BiOCl-BBZSN具有最好的光催化性能。

    图 7

    图 7.  BiOCl光催化剂在(a) 紫外光和(b) 可见光下的光催化活性
    Figure 7.  Photocatalytic activities of as-prepared BiOCl photocatalysts under (a) ultraviolet light and (b) visible light

    图 8

    图 8.  所制备BiOCl的(a) DMPO-·O2-和(b) DMPO-·OH的EPR谱图
    Figure 8.  EPR spectra of (a) DMPO-·O2- and (b) DMPO-·OH of as-prepared BiOCl

    光诱导载流子的分离和迁移效率是光催化降解的重要因素,其主要通过瞬态光电流响应(I-t)、电化学阻抗(EIS)和光致发光光谱(PL)表征。一般认为光电流密度越高,电子-空穴对分离效率越高[30]。通过考察不同催化剂在可见光照条件下产生的光电流强度,间接说明催化剂的载流子分离效率。实验结果如图 9a所示,BiOCl-BBZSN作为光电极所产生的光电流强度约为0.2 μA·cm-2,分别约为BiOCl-BBZSr和BiOCl-BBZ的2倍和6倍。这些研究结果进一步说明了富氧空位的引入提高了BiOCl-BBZSN中光生载流子的分离迁移效率,有助于光催化活性的提高。此外,由图 9b可知,与BiOCl-BBZ和BiOCl-BBZSr光催化剂相比,BiOCl-BBZSN具有更小的EIS半径,这意味着载流子迁移到表面的阻力更小。另外,使用PL谱图来确认电荷复合率(图 9c),较低的PL强度和较长的寿命与较低的电荷载流子复合率有关。BiOCl-BBZSN在468 nm附近的发光强度明显最弱,表明由BBZSN铋玻璃制备的BiOCl具有更丰富的OV,可以极大地促进光诱导载流子的空间分离,减少电子-空穴对的复合,从而进一步提高光催化剂的降解性能。

    图 9

    图 9.  BiOCl光催化剂的(a) 瞬态光电流响应、(b) EIS谱图和(c) PL谱图
    Figure 9.  (a) Transient photocurrent responses, (b) EIS spectra, and (c) PL spectra of BiOCl photocatalysts

    采用简单的一步化学反应法制备富氧空位的BiOCl光催化剂。实验结果表明,光催化剂的OV主要源于玻璃物种的原始氧缺陷。其中,用BBZSN玻璃制备的BiOCl-BBZSN光催化剂染料的降解率最高,这是因为BBZSN玻璃中引入了更多的网络外体,使玻璃结构最松散,引起更多的氧缺陷。富氧缺陷的存在调节了BiOCl材料的能带结构并且通过捕获电子加速了电子-空穴对的分离,从而改善材料的光催化降解性能。该研究在制备方法和所用铋原料方面均具有创新性,可为高效光催化剂的工业化大规模制备作出贡献。


    1. [1]

      Li G B, Huang S Q, Zhu N W, Yuan H P, Ge D D, Wei Y C. Defect-Rich Heterojunction Photocatalyst Originated from the Removal of Chloride Ions and Its Degradation Mechanism of Norfloxacin[J]. Chem. Eng. J., 2021,421:127852-127864. doi: 10.1016/j.cej.2020.127852

    2. [2]

      Kuila A, Saravanan P, Bahnemann D, Wang C. Novel Ag Decorated, BiOCl Surface Doped AgVO3 Nanobelt Ternary Composite with Z-Scheme Homojunction-Heterojunction Interface for High Prolific Photo Switching, Quantum Efficiency and Hole Mediated Photocatalysis[J]. Appl. Catal. B, 2021,293(15):120224-120240.  

    3. [3]

      Zhang L, Li Y H, Li Q, Fan J J, Carabineiro S, Lv K. Recent Advances on Bismuth-Based Photocatalysts: Strategies and Mechanisms[J]. Chem. Eng. J., 2021,419(4):129484-129506.  

    4. [4]

      Huang Y W, Zhang N, Wu Z J, Xie X Q. Artificial Nitrogen Fixation over Bismuth-Based Photocatalysts: Fundamentals and Future Perspectives[J]. J. Mater. Chem. A, 2020,8(10):4978-4995. doi: 10.1039/C9TA13589H

    5. [5]

      Wang H X, Liao B, Lu T, Ai Y L, Liu G. Enhanced Visible-Light Photocatalytic Degradation of Tetracycline by a Novel Hollow BiOCl@CeO2 Heterostructured Microspheres: Structural Characterization and Reac-tion Mechanism[J]. J. Hazard. Mater., 2020,385:121552-121561. doi: 10.1016/j.jhazmat.2019.121552

    6. [6]

      Deng F, Luo Y B, Xia B H, Luo X B, Luo S L, Dionysiou D. Efficient Toxicity Elimination of Aqueous Cr (Ⅳ) by Positively-Charged BiOClxI1-x, BiOBrxI1-x and BiOClxBr1-x Solid Solution with Internal Hole-Scavenging Capacity via the Synergy of Adsorption and Photocatalytic Reduction[J]. J. Hazard. Mater., 2020,383(5):121127-121140.  

    7. [7]

      Eshaq G, Wang S B, Sun H Q, Sillanpää M. Core/Shell FeVO4@BiOCl Heterojunction as a Durable Heterogeneous Fenton Catalyst for the Efficient Sonophotocatalytic Degradation of p-Nitrophenol[J]. Sep. Purif. Technol., 2020,231(16):115915-115931.  

    8. [8]

      Huang S Q, Li L, Zhu N W, Lou Z Y, Liu W Q, Cheng J H, Wang H M, Luo P X, Wang H. Removal and Recovery of Chloride Ions in Concentrated Leachate by Bi (Ⅲ) Containing Oxides Quantum Dots/Two-Dimensional Flakes[J]. J. Hazard. Mater., 2020,382(15):121041-121051.  

    9. [9]

      Wang B, Di J, Lu L, Yan S C, Liu G P, Ye Y Z. Sacrificing Ionic Liquid-Assisted Anchoring of Carbonized Polymer Dots on Perovskite-like PbBiO2Br for Robust CO2 Photoreduction[J]. Appl. Catal. B, 2019,254(5):551-559.

    10. [10]

      Fan K H, Yu C, Chen S T, Lan S Y, Zhu M S. Metallic Bi Self-Deposited BiOCl Promoted Piezocatalytic Removal of Carbamazepine[J]. Surf. Interfaces, 2021,26:101335-101343. doi: 10.1016/j.surfin.2021.101335

    11. [11]

      Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Yubuta K. Novel g-C3N4 Nanosheets/CDs/BiOCl Photocatalysts with Exceptional Activity under Visible Light[J]. J. Am. Ceram. Soc., 2019,102(3):1435-1453. doi: 10.1111/jace.15959

    12. [12]

      Li R J, Luan Q J, Dong C, Dong W J, Tang W, Wang G, Lu Y F. Light-Facilitated Structure Reconstruction on Self-Optimized Photocatalyst TiO2@BiOCl for Selectively Efficient Conversion of CO2 to CH4[J]. Appl. Catal. B, 2021,286(5):119832-119843.  

    13. [13]

      Mei J, Tao Y, Gao C, Zhu Q, Zhang H Y, Yu J, Fang Z, Xu H, Wang Y H, Li G S. Photo-Induced Dye-Sensitized BiPO4/BiOCl System for Stably Treating Persistent Organic Pollutants[J]. Appl. Catal. B, 2021,285(15):119841-119852.  

    14. [14]

      Wu S S, Yu X, Zhang J L, Zhang Y M, Zhu Y, Zhu M S. Construction of BiOCl/CuBi2O4 S-Scheme Heterojunction with Oxygen Vacancy for Enhanced Photocatalytic Diclofenac Degradation and Nitric Oxide Removal[J]. Chem. Eng. J., 2021,411(1):128555-128567.  

    15. [15]

      Hussain M, Mehmood R, Azhar U, Wang J N, Song L H. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅵ) Reduction[J]. ACS Appl. Nano Mater., 2021,4(4):4037-4047. doi: 10.1021/acsanm.1c00380

    16. [16]

      Shen T, Shi X K, Guo J X, Li J, Yuan S D. Photocatalytic Removal of NO by Light-Driven Mn3O4/BiOCl Heterojunction Photocatalyst: Optimization and Mechanism[J]. Chem. Eng. J., 2021,408(15):128014-128028.  

    17. [17]

      Shahid M, Mehmood R, Athar M, Hussain J, Wei Y W, Khaliq A. BiOCl Nanoplates Doped with Fe3+ Ions for the Visible-Light Degradation of Aqueous Pollutants[J]. ACS Appl. Nano Mater., 2020,4(1):746-758.  

    18. [18]

      Zhan G M, Li j, Hu Y, Zhao S X, Gao S Y, Jia F L, Zhang L Z. The Surface Hydroxyl and Oxygen Vacancy Dependent Cr (Ⅳ) Adsorption Performance of BiOCl[J]. Environ. Sci. Nano, 2020,7(5):1454-1463. doi: 10.1039/D0EN00108B

    19. [19]

      Song Z, Dong X L, Fang J D, Xiong G H, Wang N, Tang X M. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis[J]. J. Hazard. Mater., 2019,377(5):371-380.  

    20. [20]

      Jiang Z, Xiao C, Yin X Y, Xu L G, Liu C L, Wang H L. Facile Preparation of a Novel Bi24O31Br10/Nano-ZnO Composite Photocatalyst with Enhanced Visible Light Photocatalytic Ability[J]. Ceram. Int., 2020,46(8):10771-10778. doi: 10.1016/j.ceramint.2020.01.087

    21. [21]

      Zhang Z J, Wang W Z, Shang M, Yin W Z. Photocatalytic Degradation of Rhodamine B and Phenol by Solution Combustion Synthesized BiVO4 Photocatalyst[J]. Catal. Commun., 2010,11(11):982-986. doi: 10.1016/j.catcom.2010.04.013

    22. [22]

      ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave-Induced Assembly of CuS@MoS2 Core-Shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chim. Sinica, 2020,78(9):961-969.

    23. [23]

      Hashimoto T, Shimoda Y, Nasu H, Ishihara A. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅳ) Reduction[J]. J. Am. Ceram. Soc., 2011,94(7):2061-2066. doi: 10.1111/j.1551-2916.2010.04383.x

    24. [24]

      Chen J Q, Li Y F, Miao W L, Lei Q, Li M Y. Dependence of Glass Transition on the Structure in Bi-B-Zn Oxide Glass[J]. J. Alloys Compd., 2018,742(25):151-158.  

    25. [25]

      Ren Y H, Zou J H, Jing K Q, Liu Y Y, Guo B B, Song Y J, Yu Y, Wu L. Photocatalytic Synthesis of N-benzyleneamine from Benzylamine on Ultrathin BiOCl Nanosheets under Visible Light[J]. J. Catal., 2019,380:123-131. doi: 10.1016/j.jcat.2019.10.018

    26. [26]

      Hou J H, Dai D, Wei R, Wu X G, Wang X Z, Tahir M, Zou J J. Narrowing the Band Gap of BiOCl for the Hydroxyl Radical Generation of Photocatalysis under Visible Light[J]. ACS Sustainable Chem. Eng., 2019,7(19):16569-16576. doi: 10.1021/acssuschemeng.9b03885

    27. [27]

      Phasayavan W, Japa M, Pornsuwan S, Tantraviwat D, Kielar F. Oxygen-Deficient Bismuth Molybdate Nanocatalysts: Synergistic Effects in Boosting Photocatalytic Oxidative Coupling of Benzylamine and Mechanistic Insight[J]. J. Colloid Interface Sci., 2021,581(1):719-728.

    28. [28]

      Wei Z, Li W L, Hu J S, Ma X G, Zhu Y F. Interfacial Internal Electric Field and Oxygen Vacancies Synergistically Enhance Photocatlytic Performance of Bismuth Oxychloride[J]. J. Hazard. Mater., 2021,402(15):123470-123479.  

    29. [29]

      Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M. Exploring Deep Effects of Atomic Vacancies on Activating CO2 Photoreduction via Rationally Designing Indium Oxide Photocatalysts[J]. Chem. Eng. J., 2021,422(15):129888-129897.

    30. [30]

      Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J. A Special Synthesis of BiOCl Photocatalyst for Efficient Pollutants Removal: New Insight into the Band Structure Regulation and Molecular Oxygen Activation[J]. Appl. Catal. B, 2019,256(5):117872-117881.

    1. [1]

      Li G B, Huang S Q, Zhu N W, Yuan H P, Ge D D, Wei Y C. Defect-Rich Heterojunction Photocatalyst Originated from the Removal of Chloride Ions and Its Degradation Mechanism of Norfloxacin[J]. Chem. Eng. J., 2021,421:127852-127864. doi: 10.1016/j.cej.2020.127852

    2. [2]

      Kuila A, Saravanan P, Bahnemann D, Wang C. Novel Ag Decorated, BiOCl Surface Doped AgVO3 Nanobelt Ternary Composite with Z-Scheme Homojunction-Heterojunction Interface for High Prolific Photo Switching, Quantum Efficiency and Hole Mediated Photocatalysis[J]. Appl. Catal. B, 2021,293(15):120224-120240.  

    3. [3]

      Zhang L, Li Y H, Li Q, Fan J J, Carabineiro S, Lv K. Recent Advances on Bismuth-Based Photocatalysts: Strategies and Mechanisms[J]. Chem. Eng. J., 2021,419(4):129484-129506.  

    4. [4]

      Huang Y W, Zhang N, Wu Z J, Xie X Q. Artificial Nitrogen Fixation over Bismuth-Based Photocatalysts: Fundamentals and Future Perspectives[J]. J. Mater. Chem. A, 2020,8(10):4978-4995. doi: 10.1039/C9TA13589H

    5. [5]

      Wang H X, Liao B, Lu T, Ai Y L, Liu G. Enhanced Visible-Light Photocatalytic Degradation of Tetracycline by a Novel Hollow BiOCl@CeO2 Heterostructured Microspheres: Structural Characterization and Reac-tion Mechanism[J]. J. Hazard. Mater., 2020,385:121552-121561. doi: 10.1016/j.jhazmat.2019.121552

    6. [6]

      Deng F, Luo Y B, Xia B H, Luo X B, Luo S L, Dionysiou D. Efficient Toxicity Elimination of Aqueous Cr (Ⅳ) by Positively-Charged BiOClxI1-x, BiOBrxI1-x and BiOClxBr1-x Solid Solution with Internal Hole-Scavenging Capacity via the Synergy of Adsorption and Photocatalytic Reduction[J]. J. Hazard. Mater., 2020,383(5):121127-121140.  

    7. [7]

      Eshaq G, Wang S B, Sun H Q, Sillanpää M. Core/Shell FeVO4@BiOCl Heterojunction as a Durable Heterogeneous Fenton Catalyst for the Efficient Sonophotocatalytic Degradation of p-Nitrophenol[J]. Sep. Purif. Technol., 2020,231(16):115915-115931.  

    8. [8]

      Huang S Q, Li L, Zhu N W, Lou Z Y, Liu W Q, Cheng J H, Wang H M, Luo P X, Wang H. Removal and Recovery of Chloride Ions in Concentrated Leachate by Bi (Ⅲ) Containing Oxides Quantum Dots/Two-Dimensional Flakes[J]. J. Hazard. Mater., 2020,382(15):121041-121051.  

    9. [9]

      Wang B, Di J, Lu L, Yan S C, Liu G P, Ye Y Z. Sacrificing Ionic Liquid-Assisted Anchoring of Carbonized Polymer Dots on Perovskite-like PbBiO2Br for Robust CO2 Photoreduction[J]. Appl. Catal. B, 2019,254(5):551-559.

    10. [10]

      Fan K H, Yu C, Chen S T, Lan S Y, Zhu M S. Metallic Bi Self-Deposited BiOCl Promoted Piezocatalytic Removal of Carbamazepine[J]. Surf. Interfaces, 2021,26:101335-101343. doi: 10.1016/j.surfin.2021.101335

    11. [11]

      Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Yubuta K. Novel g-C3N4 Nanosheets/CDs/BiOCl Photocatalysts with Exceptional Activity under Visible Light[J]. J. Am. Ceram. Soc., 2019,102(3):1435-1453. doi: 10.1111/jace.15959

    12. [12]

      Li R J, Luan Q J, Dong C, Dong W J, Tang W, Wang G, Lu Y F. Light-Facilitated Structure Reconstruction on Self-Optimized Photocatalyst TiO2@BiOCl for Selectively Efficient Conversion of CO2 to CH4[J]. Appl. Catal. B, 2021,286(5):119832-119843.  

    13. [13]

      Mei J, Tao Y, Gao C, Zhu Q, Zhang H Y, Yu J, Fang Z, Xu H, Wang Y H, Li G S. Photo-Induced Dye-Sensitized BiPO4/BiOCl System for Stably Treating Persistent Organic Pollutants[J]. Appl. Catal. B, 2021,285(15):119841-119852.  

    14. [14]

      Wu S S, Yu X, Zhang J L, Zhang Y M, Zhu Y, Zhu M S. Construction of BiOCl/CuBi2O4 S-Scheme Heterojunction with Oxygen Vacancy for Enhanced Photocatalytic Diclofenac Degradation and Nitric Oxide Removal[J]. Chem. Eng. J., 2021,411(1):128555-128567.  

    15. [15]

      Hussain M, Mehmood R, Azhar U, Wang J N, Song L H. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅵ) Reduction[J]. ACS Appl. Nano Mater., 2021,4(4):4037-4047. doi: 10.1021/acsanm.1c00380

    16. [16]

      Shen T, Shi X K, Guo J X, Li J, Yuan S D. Photocatalytic Removal of NO by Light-Driven Mn3O4/BiOCl Heterojunction Photocatalyst: Optimization and Mechanism[J]. Chem. Eng. J., 2021,408(15):128014-128028.  

    17. [17]

      Shahid M, Mehmood R, Athar M, Hussain J, Wei Y W, Khaliq A. BiOCl Nanoplates Doped with Fe3+ Ions for the Visible-Light Degradation of Aqueous Pollutants[J]. ACS Appl. Nano Mater., 2020,4(1):746-758.  

    18. [18]

      Zhan G M, Li j, Hu Y, Zhao S X, Gao S Y, Jia F L, Zhang L Z. The Surface Hydroxyl and Oxygen Vacancy Dependent Cr (Ⅳ) Adsorption Performance of BiOCl[J]. Environ. Sci. Nano, 2020,7(5):1454-1463. doi: 10.1039/D0EN00108B

    19. [19]

      Song Z, Dong X L, Fang J D, Xiong G H, Wang N, Tang X M. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis[J]. J. Hazard. Mater., 2019,377(5):371-380.  

    20. [20]

      Jiang Z, Xiao C, Yin X Y, Xu L G, Liu C L, Wang H L. Facile Preparation of a Novel Bi24O31Br10/Nano-ZnO Composite Photocatalyst with Enhanced Visible Light Photocatalytic Ability[J]. Ceram. Int., 2020,46(8):10771-10778. doi: 10.1016/j.ceramint.2020.01.087

    21. [21]

      Zhang Z J, Wang W Z, Shang M, Yin W Z. Photocatalytic Degradation of Rhodamine B and Phenol by Solution Combustion Synthesized BiVO4 Photocatalyst[J]. Catal. Commun., 2010,11(11):982-986. doi: 10.1016/j.catcom.2010.04.013

    22. [22]

      ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave-Induced Assembly of CuS@MoS2 Core-Shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chim. Sinica, 2020,78(9):961-969.

    23. [23]

      Hashimoto T, Shimoda Y, Nasu H, Ishihara A. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅳ) Reduction[J]. J. Am. Ceram. Soc., 2011,94(7):2061-2066. doi: 10.1111/j.1551-2916.2010.04383.x

    24. [24]

      Chen J Q, Li Y F, Miao W L, Lei Q, Li M Y. Dependence of Glass Transition on the Structure in Bi-B-Zn Oxide Glass[J]. J. Alloys Compd., 2018,742(25):151-158.  

    25. [25]

      Ren Y H, Zou J H, Jing K Q, Liu Y Y, Guo B B, Song Y J, Yu Y, Wu L. Photocatalytic Synthesis of N-benzyleneamine from Benzylamine on Ultrathin BiOCl Nanosheets under Visible Light[J]. J. Catal., 2019,380:123-131. doi: 10.1016/j.jcat.2019.10.018

    26. [26]

      Hou J H, Dai D, Wei R, Wu X G, Wang X Z, Tahir M, Zou J J. Narrowing the Band Gap of BiOCl for the Hydroxyl Radical Generation of Photocatalysis under Visible Light[J]. ACS Sustainable Chem. Eng., 2019,7(19):16569-16576. doi: 10.1021/acssuschemeng.9b03885

    27. [27]

      Phasayavan W, Japa M, Pornsuwan S, Tantraviwat D, Kielar F. Oxygen-Deficient Bismuth Molybdate Nanocatalysts: Synergistic Effects in Boosting Photocatalytic Oxidative Coupling of Benzylamine and Mechanistic Insight[J]. J. Colloid Interface Sci., 2021,581(1):719-728.

    28. [28]

      Wei Z, Li W L, Hu J S, Ma X G, Zhu Y F. Interfacial Internal Electric Field and Oxygen Vacancies Synergistically Enhance Photocatlytic Performance of Bismuth Oxychloride[J]. J. Hazard. Mater., 2021,402(15):123470-123479.  

    29. [29]

      Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M. Exploring Deep Effects of Atomic Vacancies on Activating CO2 Photoreduction via Rationally Designing Indium Oxide Photocatalysts[J]. Chem. Eng. J., 2021,422(15):129888-129897.

    30. [30]

      Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J. A Special Synthesis of BiOCl Photocatalyst for Efficient Pollutants Removal: New Insight into the Band Structure Regulation and Molecular Oxygen Activation[J]. Appl. Catal. B, 2019,256(5):117872-117881.

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    3. [3]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    6. [6]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    7. [7]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    8. [8]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    9. [9]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    12. [12]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    13. [13]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    14. [14]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(9)
  • Abstract views(1271)
  • HTML views(263)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return