Citation: Wen-Jing DONG, Hai-Shen REN, Tian-Yi XIE, Hui-Xing LIN. In-Situ Synthesis and Performance of Oxygen Vacancy-Rich BiOCl Photocatalytic Material Derived from Bismuth-Based Glass[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 501-509. doi: 10.11862/CJIC.2022.047 shu

In-Situ Synthesis and Performance of Oxygen Vacancy-Rich BiOCl Photocatalytic Material Derived from Bismuth-Based Glass

Figures(9)

  • Oxygen vacancies enact a vital role on the visible light absorption range and electron-hole separation efficiency of the photocatalytic material. Bismuth-based glass is rich in oxygen vacancy defects. BiOCl photocatalytic material was synthesized in-situ by hydrochloric acid corrosion of bismuth-based glass, and the influence of the outer body of the glass network on the oxygen vacancy concentration was studied. X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and electron paramagnetic resonance (EPR) were used to characterize the structure, morphology, and oxygen vacancy concentration of the synthesized BiOCl material. The results showed that the number of oxygen vacancies of the Bi2O3-B2O3-ZnO bismuth-based glass increased with the increase of the external body composition of the network. The in-situ synthesized BiOCl will "inherit"a large number of oxygen vacancies in the glass. The degradation rate of rhodamine B was as high as 93.1% under visible light for 100 min.
  • 加载中
    1. [1]

      Li G B, Huang S Q, Zhu N W, Yuan H P, Ge D D, Wei Y C. Defect-Rich Heterojunction Photocatalyst Originated from the Removal of Chloride Ions and Its Degradation Mechanism of Norfloxacin[J]. Chem. Eng. J., 2021,421:127852-127864. doi: 10.1016/j.cej.2020.127852

    2. [2]

      Kuila A, Saravanan P, Bahnemann D, Wang C. Novel Ag Decorated, BiOCl Surface Doped AgVO3 Nanobelt Ternary Composite with Z-Scheme Homojunction-Heterojunction Interface for High Prolific Photo Switching, Quantum Efficiency and Hole Mediated Photocatalysis[J]. Appl. Catal. B, 2021,293(15):120224-120240.  

    3. [3]

      Zhang L, Li Y H, Li Q, Fan J J, Carabineiro S, Lv K. Recent Advances on Bismuth-Based Photocatalysts: Strategies and Mechanisms[J]. Chem. Eng. J., 2021,419(4):129484-129506.  

    4. [4]

      Huang Y W, Zhang N, Wu Z J, Xie X Q. Artificial Nitrogen Fixation over Bismuth-Based Photocatalysts: Fundamentals and Future Perspectives[J]. J. Mater. Chem. A, 2020,8(10):4978-4995. doi: 10.1039/C9TA13589H

    5. [5]

      Wang H X, Liao B, Lu T, Ai Y L, Liu G. Enhanced Visible-Light Photocatalytic Degradation of Tetracycline by a Novel Hollow BiOCl@CeO2 Heterostructured Microspheres: Structural Characterization and Reac-tion Mechanism[J]. J. Hazard. Mater., 2020,385:121552-121561. doi: 10.1016/j.jhazmat.2019.121552

    6. [6]

      Deng F, Luo Y B, Xia B H, Luo X B, Luo S L, Dionysiou D. Efficient Toxicity Elimination of Aqueous Cr (Ⅳ) by Positively-Charged BiOClxI1-x, BiOBrxI1-x and BiOClxBr1-x Solid Solution with Internal Hole-Scavenging Capacity via the Synergy of Adsorption and Photocatalytic Reduction[J]. J. Hazard. Mater., 2020,383(5):121127-121140.  

    7. [7]

      Eshaq G, Wang S B, Sun H Q, Sillanpää M. Core/Shell FeVO4@BiOCl Heterojunction as a Durable Heterogeneous Fenton Catalyst for the Efficient Sonophotocatalytic Degradation of p-Nitrophenol[J]. Sep. Purif. Technol., 2020,231(16):115915-115931.  

    8. [8]

      Huang S Q, Li L, Zhu N W, Lou Z Y, Liu W Q, Cheng J H, Wang H M, Luo P X, Wang H. Removal and Recovery of Chloride Ions in Concentrated Leachate by Bi (Ⅲ) Containing Oxides Quantum Dots/Two-Dimensional Flakes[J]. J. Hazard. Mater., 2020,382(15):121041-121051.  

    9. [9]

      Wang B, Di J, Lu L, Yan S C, Liu G P, Ye Y Z. Sacrificing Ionic Liquid-Assisted Anchoring of Carbonized Polymer Dots on Perovskite-like PbBiO2Br for Robust CO2 Photoreduction[J]. Appl. Catal. B, 2019,254(5):551-559.

    10. [10]

      Fan K H, Yu C, Chen S T, Lan S Y, Zhu M S. Metallic Bi Self-Deposited BiOCl Promoted Piezocatalytic Removal of Carbamazepine[J]. Surf. Interfaces, 2021,26:101335-101343. doi: 10.1016/j.surfin.2021.101335

    11. [11]

      Asadzadeh-Khaneghah S, Habibi-Yangjeh A, Yubuta K. Novel g-C3N4 Nanosheets/CDs/BiOCl Photocatalysts with Exceptional Activity under Visible Light[J]. J. Am. Ceram. Soc., 2019,102(3):1435-1453. doi: 10.1111/jace.15959

    12. [12]

      Li R J, Luan Q J, Dong C, Dong W J, Tang W, Wang G, Lu Y F. Light-Facilitated Structure Reconstruction on Self-Optimized Photocatalyst TiO2@BiOCl for Selectively Efficient Conversion of CO2 to CH4[J]. Appl. Catal. B, 2021,286(5):119832-119843.  

    13. [13]

      Mei J, Tao Y, Gao C, Zhu Q, Zhang H Y, Yu J, Fang Z, Xu H, Wang Y H, Li G S. Photo-Induced Dye-Sensitized BiPO4/BiOCl System for Stably Treating Persistent Organic Pollutants[J]. Appl. Catal. B, 2021,285(15):119841-119852.  

    14. [14]

      Wu S S, Yu X, Zhang J L, Zhang Y M, Zhu Y, Zhu M S. Construction of BiOCl/CuBi2O4 S-Scheme Heterojunction with Oxygen Vacancy for Enhanced Photocatalytic Diclofenac Degradation and Nitric Oxide Removal[J]. Chem. Eng. J., 2021,411(1):128555-128567.  

    15. [15]

      Hussain M, Mehmood R, Azhar U, Wang J N, Song L H. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅵ) Reduction[J]. ACS Appl. Nano Mater., 2021,4(4):4037-4047. doi: 10.1021/acsanm.1c00380

    16. [16]

      Shen T, Shi X K, Guo J X, Li J, Yuan S D. Photocatalytic Removal of NO by Light-Driven Mn3O4/BiOCl Heterojunction Photocatalyst: Optimization and Mechanism[J]. Chem. Eng. J., 2021,408(15):128014-128028.  

    17. [17]

      Shahid M, Mehmood R, Athar M, Hussain J, Wei Y W, Khaliq A. BiOCl Nanoplates Doped with Fe3+ Ions for the Visible-Light Degradation of Aqueous Pollutants[J]. ACS Appl. Nano Mater., 2020,4(1):746-758.  

    18. [18]

      Zhan G M, Li j, Hu Y, Zhao S X, Gao S Y, Jia F L, Zhang L Z. The Surface Hydroxyl and Oxygen Vacancy Dependent Cr (Ⅳ) Adsorption Performance of BiOCl[J]. Environ. Sci. Nano, 2020,7(5):1454-1463. doi: 10.1039/D0EN00108B

    19. [19]

      Song Z, Dong X L, Fang J D, Xiong G H, Wang N, Tang X M. Improved Photocatalytic Degradation of Perfluorooctanoic Acid on Oxygen Vacancies-Tunable Bismuth Oxychloride Nanosheets Prepared by a Facile Hydrolysis[J]. J. Hazard. Mater., 2019,377(5):371-380.  

    20. [20]

      Jiang Z, Xiao C, Yin X Y, Xu L G, Liu C L, Wang H L. Facile Preparation of a Novel Bi24O31Br10/Nano-ZnO Composite Photocatalyst with Enhanced Visible Light Photocatalytic Ability[J]. Ceram. Int., 2020,46(8):10771-10778. doi: 10.1016/j.ceramint.2020.01.087

    21. [21]

      Zhang Z J, Wang W Z, Shang M, Yin W Z. Photocatalytic Degradation of Rhodamine B and Phenol by Solution Combustion Synthesized BiVO4 Photocatalyst[J]. Catal. Commun., 2010,11(11):982-986. doi: 10.1016/j.catcom.2010.04.013

    22. [22]

      ZHAO J J, ZHANG Z Z, CHEN X L, WANG B, DENG J Y, ZHANG D Q, LI H X. Microwave-Induced Assembly of CuS@MoS2 Core-Shell Nanotubes and Study on Their Photocatalytic Fenton-like Reactions[J]. Acta Chim. Sinica, 2020,78(9):961-969.

    23. [23]

      Hashimoto T, Shimoda Y, Nasu H, Ishihara A. BiOCl-Coated UiO-66-NH2 Metal-Organic Framework Nanoparticles for Visible-Light Photocatalytic Cr(Ⅳ) Reduction[J]. J. Am. Ceram. Soc., 2011,94(7):2061-2066. doi: 10.1111/j.1551-2916.2010.04383.x

    24. [24]

      Chen J Q, Li Y F, Miao W L, Lei Q, Li M Y. Dependence of Glass Transition on the Structure in Bi-B-Zn Oxide Glass[J]. J. Alloys Compd., 2018,742(25):151-158.  

    25. [25]

      Ren Y H, Zou J H, Jing K Q, Liu Y Y, Guo B B, Song Y J, Yu Y, Wu L. Photocatalytic Synthesis of N-benzyleneamine from Benzylamine on Ultrathin BiOCl Nanosheets under Visible Light[J]. J. Catal., 2019,380:123-131. doi: 10.1016/j.jcat.2019.10.018

    26. [26]

      Hou J H, Dai D, Wei R, Wu X G, Wang X Z, Tahir M, Zou J J. Narrowing the Band Gap of BiOCl for the Hydroxyl Radical Generation of Photocatalysis under Visible Light[J]. ACS Sustainable Chem. Eng., 2019,7(19):16569-16576. doi: 10.1021/acssuschemeng.9b03885

    27. [27]

      Phasayavan W, Japa M, Pornsuwan S, Tantraviwat D, Kielar F. Oxygen-Deficient Bismuth Molybdate Nanocatalysts: Synergistic Effects in Boosting Photocatalytic Oxidative Coupling of Benzylamine and Mechanistic Insight[J]. J. Colloid Interface Sci., 2021,581(1):719-728.

    28. [28]

      Wei Z, Li W L, Hu J S, Ma X G, Zhu Y F. Interfacial Internal Electric Field and Oxygen Vacancies Synergistically Enhance Photocatlytic Performance of Bismuth Oxychloride[J]. J. Hazard. Mater., 2021,402(15):123470-123479.  

    29. [29]

      Zhu X W, Yang J M, Zhu X L, Yuan J J, Zhou M. Exploring Deep Effects of Atomic Vacancies on Activating CO2 Photoreduction via Rationally Designing Indium Oxide Photocatalysts[J]. Chem. Eng. J., 2021,422(15):129888-129897.

    30. [30]

      Zhao H, Liu X, Dong Y M, Xia Y M, Wang H J. A Special Synthesis of BiOCl Photocatalyst for Efficient Pollutants Removal: New Insight into the Band Structure Regulation and Molecular Oxygen Activation[J]. Appl. Catal. B, 2019,256(5):117872-117881.

  • 加载中
    1. [1]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    2. [2]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    3. [3]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    4. [4]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    9. [9]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    10. [10]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    14. [14]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    19. [19]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(6)
  • Abstract views(909)
  • HTML views(192)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return