Citation: Chang-Wei DANG, Yong-Wei ZHANG, Feng HAN, Jiao-E DANG, Zhuo-Lei LIU, Yin-Hao WANG, Ying-Ying DENG, Si-Ning YUN. Chemical Co-precipitation Preparation of ZnMoO4/Aloe-Derived Porous Carbon and Catalytic Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 489-500. doi: 10.11862/CJIC.2022.046 shu

Chemical Co-precipitation Preparation of ZnMoO4/Aloe-Derived Porous Carbon and Catalytic Performance

  • Corresponding author: Si-Ning YUN, yunsining@xauat.edu.cn
  • Received Date: 29 September 2021
    Revised Date: 10 December 2021

Figures(8)

  • Herein, aloe-derived porous carbon (APC), ZnMoO4, and ZnMoO4/APC catalysts were successfully prepared by two-step activation and chemical co-precipitation, respectively. As counter electrodes (CEs) in dyesensitized solar cells (DSSCs), the electrochemical properties and photovoltaic performance of these three CE catalysts in Cu-mediated DSSCs with D35 and Y123 dyes were explored. The microstructure, chemical composition, specific surface area, and porous textures of APC, ZnMoO4, and ZnMoO4/APC were characterized by field emission scanning electron microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and N2 adsorption-desorption isotherms. The results show that APC was a porous network structure with a specific surface area of 1 439 m2·g-1, and ZnMoO4 nanoparticles were evenly embedded or dispersed on the surface of APC. ZnMoO4/APC delivered a power conversion efficiency (PCE) of 3.97% and 3.72% in the Cu2+/Cu+ electrolyte-based DSSCs with D35 and Y123 dyes, respectively, which was higher than that of APC (2.72%, 2.61%), ZnMoO4 (1.24%, 1.08%) and Pt (2.86%, 2.80%) at the same conditions.
  • 加载中
    1. [1]

      Lewis N S, Nocera D G. Powering the Planet: Chemical Challenges in Solar Energy Utilization[J]. Proc. Natl. Acad. Sci. U.S.A., 2006,103(43):15729-15735. doi: 10.1073/pnas.0603395103

    2. [2]

      Yun S N, Hagfeldt A, Ma T L. Pt-Free Counter Electrode for Dye-Sensitized Solar Cells with High Efficiency[J]. Adv. Mater., 2014,26(36):6210-6237. doi: 10.1002/adma.201402056

    3. [3]

      Yuan S X, Yun S N, Zhang Y W, Dang J E, Sun M L, Dang C W, Deng Y Y. Dual-Phase Zinc Selenide In Situ Encapsulated into Size-Reduced ZIF-8 Derived Selenium and Nitrogen Co-doped Porous Carbon for Efficient Triiodide Reduction Reaction[J]. J. Mater. Chem. C, 2021,9(40):14408-14420. doi: 10.1039/D1TC02734D

    4. [4]

      Tang Q W, Zhang H H, Meng Y Y, He B L, Yu L M. Dissolution Engineering of Platinum Alloy Counter Electrodes in Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2015,54(39):11448-11452. doi: 10.1002/anie.201505339

    5. [5]

      Yun S N, Zhang Y W, Xu Q, Liu J M, Qin Y. Recent Advance in New-Generation Integrated Devices for Energy Harvesting and Storage[J]. Nano Energy, 2019,60:600-619. doi: 10.1016/j.nanoen.2019.03.074

    6. [6]

      Hattori S, Wada Y, Yanagida S, Fukuzumi S. Blue Copper Model Complexes with Distorted Tetragonal Geometry Acting as Effective Electron-Transfer Mediators in Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc., 2005,127(26):9648-9654. doi: 10.1021/ja0506814

    7. [7]

      Yun S N, Liu Y F, Zhang T H, Ahmad S. Recent Advances in Alternative Counter Electrode Materials for Co-Mediated Dye-Sensitized Solar Cells[J]. Nanoscale, 2015,7(28):11877-11893. doi: 10.1039/C5NR02433A

    8. [8]

      Zhang D, Stojanovic M, Ren Y M, Cao Y M, Eickemeyer F T, Socie E, Vlachopoulos N, Moser J E, Zakeeruddin S M, Hagfeldt A, Gratzel M. A Molecular Photosensitizer Achieves a Voc of 1. 24 V Enabling Highly Efficient and Stable Dye-Sensitized Solar Cells with Copper(Ⅱ/Ⅰ)-Based Electrolyte[J]. Nat. Commun., 2021,12(1)1777.

    9. [9]

      Freitag M, Teuscher J, Saygili Y, Zhang X Y, Giordano F, Liska P, Hua J L, Zakeeruddin S M, Moser J E, Grätzel M, Hagfeldt A. Dye-Sensitized Solar Cells for Efficient Power Generation Under Ambient Lighting[J]. Nat. Photonics, 2017,11(6):372-378. doi: 10.1038/nphoton.2017.60

    10. [10]

      Zhang Y W, Yun S N, Qiao X Y, Sun M L, Dang J E, Dang C W, Yang J J. Hybridization of Mn/Ta Bimetallic Oxide and Mesh-like Porous Bio-Carbon for Boosting Copper Reduction for D35/Y123-Sensitized Solar Cells and Hydrogen Evolution[J]. J. Alloys Compd., 2022,893162349. doi: 10.1016/j.jallcom.2021.162349

    11. [11]

      Yun S N, Pu H H, Chen J H, Hagfeldt A, Ma T L. Enhanced Performance of Supported HfO2 Counter Electrodes for Redox Couples Used in Dye-Sensitized Solar Cells[J]. ChemSusChem, 2014,7(2):442-450. doi: 10.1002/cssc.201301140

    12. [12]

      Zhang Y W, Yun S N, Wang Z Q, Zhang Y L, Wang C, Arshad A, Han F, Si Y M, Fang W. Highly Efficient Bio-Based Porous Carbon Hybridized with Tungsten Carbide as Counter Electrode for Dye-Sensitized Solar Cell[J]. Ceram. Int., 2020,46(10):15812-15821. doi: 10.1016/j.ceramint.2020.03.128

    13. [13]

      Tang Q W, Duan J L, Duan Y Y, He B L, Yu L M. Recent Advances in Alloy Counter Electrodes for Dye-Sensitized Solar Cells[J]. A Critical Review. Electrochim. Acta, 2015,178:886-899. doi: 10.1016/j.electacta.2015.08.072

    14. [14]

      Yun S N, Freitas J N, Nogueira A F, Wang Y M, Ahmad S, Wang Z S. Dye-Sensitized Solar Cells Employing Polymers[J]. Prog. Polym. Sci., 2016,59:1-40. doi: 10.1016/j.progpolymsci.2015.10.004

    15. [15]

      Dang J E, Yun S N, Zhou X, Zhang Y W, Wu Z B. An Integrated Approach to Construct Tantalum Derivatives for Electrocatalysis Beyond the Triiodide Reduction Reaction[J]. Ceram. Int., 2021,47(16):23066-23077. doi: 10.1016/j.ceramint.2021.05.021

    16. [16]

      Zhang Y L, Yun S N, Wang C, Wang Z Q, Han F, Si Y M. Bio-Based Carbon-Enhanced Tungsten-Based Bimetal Oxides as Counter Electrodes for Dye-Sensitized Solar Cells[J]. J. Power Sources, 2019,423:339-348. doi: 10.1016/j.jpowsour.2019.03.054

    17. [17]

      Du F, Yang Q, Qin T Z, Li G. Morphology-Controlled Growth of NiCo2O4 Ternary Oxides and Their Application in Dye-Sensitized Solar Cells as Counter Electrodes[J]. Sol. Energy, 2017,146:125-130. doi: 10.1016/j.solener.2017.02.025

    18. [18]

      Zheng X J, Guo J H, Shi Y T, Xiong F Q, Zhang W H, Ma T L, Li C. Low-Cost and High-Performance CoMoS4 and NiMoS4 Counter Electrodes for Dye-Sensitized Solar Cells[J]. Chem. Commun., 2013,49(83):9645-9647. doi: 10.1039/c3cc45064c

    19. [19]

      Wang C, Yun S N, Fan Q Y, Wang Z Q, Zhang Y L, Han F, Si Y M, Hagfeldt A. A Hybrid Niobium-Based Oxide with Bio-Based Porous Carbon as an Efficient Electrocatalyst in Photovoltaics: A General Strategy for Understanding the Catalytic Mechanism[J]. J. Mater. Chem. A, 2019,7(24):14864-14875. doi: 10.1039/C9TA03540K

    20. [20]

      Qiao X Y, Yun S N, Han F, Zhang Y W, Arshad A, Chidambaram B, Wang Z Q, Zafar N, Si Y M, Li J W. Honeycomb-like Bio-Based Carbon Framework Decorated with Ternary Tantalum-Based Compounds as Efficient and Durable Electrocatalysts for Triiodide Reduction Reaction[J]. Int. J. Energy Res., 2020,44(9):7630-7644. doi: 10.1002/er.5495

    21. [21]

      Yun S N, Shi J, Si Y M, Sun M L, Zhang Y W, Arshad A, Yang C. Insight into Electrocatalytic Activity and Mechanism of Bimetal Niobium-Based Oxides In Situ Embedded into Biomass-Derived Porous Carbon Skeleton Nanohybrids for Photovoltaics and Alkaline Hydrogen Evolution[J]. J. Colloid Interface Sci., 2021,601:12-29. doi: 10.1016/j.jcis.2021.05.060

    22. [22]

      Yuan H, Jiao Q Z, Zhang S L, Zhao Y, Wu Q, Li H S. In Situ Chemical Vapor Deposition Growth of Carbon Nanotubes on Hollow CoFe2O4 as an Efficient and Low Cost Counter Electrode for Dye-Sensitized Solar Cells[J]. J. Power Sources, 2016,325:417-426. doi: 10.1016/j.jpowsour.2016.06.052

    23. [23]

      Li G R, Wang F, Song J, Xiong F Y, Gao X P. Tin-Conductive Carbon Black Composite as Counter Electrode for Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2012,65:216-220. doi: 10.1016/j.electacta.2012.01.041

    24. [24]

      Li G R, Wang F, Jiang Q W, Gao X P, Shen P W. Carbon Nanotubes with Titanium Nitride as a Low-Cost Counter-Electrode Material for Dye-Sensitized Solar Cells[J]. Angew. Chem. Int. Ed., 2010,49(21):3653-3656. doi: 10.1002/anie.201000659

    25. [25]

      Song J, Li G R, Xiong F Y, Gao X P. Synergistic Effect of Molybde-num Nitride and Carbon Nanotubes on Electrocatalysis for Dye-Sensitized Solar Cells[J]. J. Mater. Chem. C, 2012,22(38):20580-20585. doi: 10.1039/c2jm34878k

    26. [26]

      Yue G T, Lin J Y, Tai S Y, Xiao Y M, Wu J H. A Catalytic Composite Film of MoS2/Graphene Flake as a Counter Electrode for Pt-Free Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2012,85:162-168. doi: 10.1016/j.electacta.2012.08.040

    27. [27]

      Das S, Sudhagar P, Nagarajan S, Ito E, Lee S Y, Kang Y S, Choi W B. Synthesis of Graphene-CoS Electro-Catalytic Electrodes for Dye Sensitized Solar Cells[J]. Carbon, 2012,50(13):4815-4821. doi: 10.1016/j.carbon.2012.06.006

    28. [28]

      Tansoonton T, Maiaugree W, Karaphun A, Kotutha I, Swatsitang E. Synthesis of MoS2-MoO2/MWCNTs Counter Electrode for High-Efficient Dye-Sensitized Solar Cells[J]. J. Mater. Sci.: Mater. Electron., 2019,30(23):20778-20788. doi: 10.1007/s10854-019-02445-z

    29. [29]

      Mutta G R, Popuri S R, Wilson J I B, Bennett N S. Sol-Gel Spin Coated Well Adhered MoO3 Thin Films as an Alternative Counter Electrode for Dye Sensitized Solar Cells[J]. Solid State Sci., 2016,61:84-88. doi: 10.1016/j.solidstatesciences.2016.08.016

    30. [30]

      Li Z X, Ma Z Y, Zhang X, Du Q Z, Fu Y H, Shuang L, Yang K, Li L, Lai W D, Zhang W M. In-Situ Growth NiMoS3 Nanoparticles onto Electrospinning Synthesis Carbon Nanofibers as a Low Cost Platinum-Free Counter Electrode for Dye-Sensitized Solar Cells[J]. J. Alloys Compd., 2021,850156807. doi: 10.1016/j.jallcom.2020.156807

    31. [31]

      Huo J H, Wu J H, Zheng M, Tu Y G, Lan Z. Hydrothermal Synthesis of CoMoO4/Co9S8 Hybrid Nanotubes Based on Counter Electrodes for Highly Efficient Dye-Sensitized Solar Cells[J]. RSC Adv., 2015,5(101):83029-83035. doi: 10.1039/C5RA17026E

    32. [32]

      Xing T, Yun S N, Li B J, Wang K J, Chen J G, Jia B, Ke T, An J H. Coconut-Shell-Derived Bio-Based Carbon Enhanced Microbial Electrolysis Cells for Upgrading Anaerobic Co-digestion of Cow Manure and Aloe Peel Waste[J]. Bioresour. Technol., 2021,338125520. doi: 10.1016/j.biortech.2021.125520

    33. [33]

      Wang X D, Yun S N, Fang W, Zhang C, Liang X, Lei Z B, Liu Z H. Layer-Stacking Activated Carbon Derived from Sunflower Stalk as Electrode Materials for High-Performance Supercapacitors[J]. ACS Sustainable Chem. Eng., 2018,6(9):11397-11407. doi: 10.1021/acssuschemeng.8b01334

    34. [34]

      Wang Z Q, Yun S N, Wang X D, Wang C, Si Y M, Zhang Y L, Xu H F. Aloe Peel-Derived Honeycomb-like Bio-Based Carbon with Controllable Morphology and Its Superior Electrochemical Properties for New Energy Devices[J]. Ceram. Int., 2019,45(4):4208-4218. doi: 10.1016/j.ceramint.2018.11.091

    35. [35]

      Zhang Y W, Yun S N, Sun M L, Wang X, Zhang L S, Dang J E, Yang C, Yang J J, Dang C W, Yuan S X. Implanted Metal-Nitrogen Active Sites Enhance the Electrocatalytic Activity of Zeolitic Imidazolate Zinc Framework-Derived Porous Carbon for the Hydrogen Evolution Reaction in Acidic and Alkaline Media[J]. J. Colloid Interface Sci., 2021,604:441-457. doi: 10.1016/j.jcis.2021.06.152

    36. [36]

      Wang C, Yun S N, Xu H F, Wang Z Q, Han F, Zhang Y L, Si Y M, Sun M L. Dual Functional Application of Pomelo Peel-Derived Bio-Based Carbon with Controllable Morphologies: An Efficient Catalyst for Triiodide Reduction and Accelerant for Anaerobic Digestion[J]. Ceram. Int., 2020,46(3):3292-3303. doi: 10.1016/j.ceramint.2019.10.035

    37. [37]

      Madhu R, Veeramani V, Chen S M, Palanisamy J, Vilian A T E. Pumpkin Stem-Derived Activated Carbons as Counter Electrodes for Dye-Sensitized Solar Cells[J]. RSC Adv., 2014,4(109):63917-63921. doi: 10.1039/C4RA12585A

    38. [38]

      Wang G Q, Wang D L, Kuang S, Xing W, Zhuo S P. Hierarchical Porous Carbon Derived from Rice Husk as a Low-Cost Counter Electrode of Dye-Sensitized Solar Cells[J]. Renewable Energy, 2014,63:708-714. doi: 10.1016/j.renene.2013.10.033

    39. [39]

      Yun S N, Fang W, Du T T, Hu X L, Huang X L, Li X, Zhang C, Lund P D. Use of Bio-Based Carbon Materials for Improving Biogas Yield and Digestate Stability[J]. Energy, 2018,164:898-909. doi: 10.1016/j.energy.2018.09.067

    40. [40]

      Zafar N, Yun S N, Sun M L, Shi J, Arshad A, Zhang Y W, Wu Z B. Cobalt-Based Incorporated Metals in Metal-Organic Framework-Derived Nitrogen-Doped Carbon as a Robust Catalyst for Triiodide Reduction in Photovoltaics[J]. ACS Catal., 2021:13680-13695.

    41. [41]

      YANG C, ZHAO X Y, ZHANG L Z. Preparation and Electrochemical Performance of Porous Carbon/Selenium Composite Free-Standing Electrode[J]. Chinese J. Inorg. Chem., 2021,37(11):1922-1930. doi: 10.11862/CJIC.2021.242 

    42. [42]

      Jing H Y, Shi Y T, Wu D Y, Liang S X, Song X D, An Y L, Hao C. Well-Defined Heteroatom-Rich Porous Carbon Electrocatalyst Derived from Biowaste for High-Performance Counter Electrode in Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2018,281:646-653. doi: 10.1016/j.electacta.2018.06.020

    43. [43]

      Yun S N, Zhang H, Pu H H, Chen J H, Hagfeldt A, Ma T L. Metal Oxide/Carbide/Carbon Nanocomposites: In Situ Synthesis, Characterization, Calculation, and Their Application as an Efficient Counter Electrode Catalyst for Dye-Sensitized Solar Cells[J]. Adv. Energy Mater., 2013,3(11):1407-1412. doi: 10.1002/aenm.201300242

    44. [44]

      Chen Y Y, Zhang Y, Zhang X, Tang T, Luo H, Niu S, Dai Z H, Wan L J, Hu J S. Self-Templated Fabrication of MoNi4/MoO3-x Nanorod Arrays with Dual Active Components for Highly Efficient Hydrogen Evolution[J]. Adv. Mater., 2017,29(39)1703311. doi: 10.1002/adma.201703311

    45. [45]

      Lin L, Yang Z K, Jiang Y F, Xu A W. Nonprecious Bimetallic (Fe, Mo)-N/C Catalyst for Efficient Oxygen Reduction Reaction[J]. ACS Catal., 2016,6(7):4449-4454. doi: 10.1021/acscatal.6b00535

    46. [46]

      Li J W, Yun S N, Han F, Si Y M, Arshad A, Zhang Y W, Chidambaram B, Zafar N, Qiao X Y. Biomass-Derived Carbon Boosted Catalytic Properties of Tungsten-Based Nanohybrids for Accelerating the Triiodide Reduction in Dye-Sensitized Solar Cells[J]. J. Colloid Interface Sci., 2020,578:184-194. doi: 10.1016/j.jcis.2020.04.089

    47. [47]

      Higashino T, Iiyama H, Nishimura I, Imahori H. Exploration on the Combination of Push-Pull Porphyrin Dyes and Copper(Ⅰ/Ⅱ) Redox Shuttles toward High-Performance Dye-Sensitized Solar Cells[J]. Chem. Lett., 2020,49(8):936-939. doi: 10.1246/cl.200317

    48. [48]

      Colombo A, Di Carlo G, Dragonetti C, Magni M, Biroli A O, Pizzotti M, Roberto D, Tessore F, Benazzi E, Bignozzi C A, Casarin L, Caramori S. Coupling of Zinc Porphyrin Dyes and Copper Electrolytes: A Springboard for Novel Sustainable Dye-Sensitized Solar Cells[J]. Inorg. Chem., 2017,56(22):14189-14197. doi: 10.1021/acs.inorgchem.7b02323

    49. [49]

      Magni M, Giannuzzi R, Colombo A, Cipolla M P, Dragonetti C, Caramori S, Carli S, Grisorio R, Suranna G P, Bignozzi C A, Roberto D, Manca M. Tetracoordinated Bis-phenanthroline Copper-Complex Couple as Efficient Redox Mediators for Dye Solar Cells[J]. Inorg. Chem., 2016,55(11):5245-5253. doi: 10.1021/acs.inorgchem.6b00204

    50. [50]

      Rodrigues R R, Lee J M, Taylor N S, Cheema H, Chen L Z, Fortenberry R C, Delcamp J H, Jurss J W. Copper-Based Redox Shuttles Supported by Preorganized Tetradentate Ligands for Dye-Sensitized Solar Cells[J]. Dalton Trans., 2020,49(2):343-355. doi: 10.1039/C9DT04030G

    51. [51]

      Dragonetti C, Magni M, Colombo A, Fagnani F, Roberto D, Melchiorre F, Biagini P, Fantacci S. Towards Efficient Sustainable Full-Copper Dye-Sensitized Solar Cells[J]. Dalton Trans., 2019,48(26):9703-9711. doi: 10.1039/C9DT00790C

  • 加载中
    1. [1]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    4. [4]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    5. [5]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    6. [6]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Xiaomei Ning Liang Zhan Xiaosong Zhou Jin Luo Xunfu Zhou Cuifen Luo . Preparation and Electro-Oxidation Performance of PtBi Supported on Carbon Cloth: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 217-224. doi: 10.3866/PKU.DXHX202401085

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    18. [18]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

Metrics
  • PDF Downloads(5)
  • Abstract views(834)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return