Citation: Feng-He ZHAO, Chong-Min ZHANG. Application of Monodisperse SiO2 Nanoparticles Composite Gel Electrolytes[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 313-320. doi: 10.11862/CJIC.2022.040 shu

Application of Monodisperse SiO2 Nanoparticles Composite Gel Electrolytes

  • Corresponding author: Feng-He ZHAO, work3857@163.com
  • Received Date: 25 August 2021
    Revised Date: 13 December 2021

Figures(6)

  • In this work, the well-monodispersed SiO2 nanoparticles (about 130 nm) were used as the filler while the polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) was used as the polymer matrix. The monodisperse SiO2 composite gel polymer electrolytes (MCGPEs) were prepared by a simple method and applied to lithium batteries. SiO2 has better dispersion and uniformity in the polymer matrix. Compared with the conventional composite gel polymer electrolytes (GPEs) and commercial SiO2 composite gel polymer electrolytes (CGPEs), MCGPEs exhibited the more excellent ability of liquid absorption and better lithium-ion migration ability. Moreover, the cells which used MCGPEs as electrolytes maintained a high specific capacity of 121.1 mAh·g-1 after 300 cycles at 1.0C, showing a satisfactory cycle performance. Meanwhile, the rate performance of MCGPEs was also excellent. The cells using MCGPEs owned the specific capacity of 135 mAh·g-1 at 10C which was higher than GPEs cells (76.2 mAh·g-1).
  • 加载中
    1. [1]

      Sui Y M, Liu C F, Masse R C, Neale Z G, Atif M, AlSalhi M, Cao G Z. Dual-Ion Batteries: The Emerging Alternative Rechargeable Batteries[J]. Energy Storage Mater., 2020,25:1-32.  

    2. [2]

      Costa , C M, Lee Y H, Kim J H, Lee S Y, Lanceros-Mendez S. Recent Advances on Separator Membranes for Lithium-Ion Battery Applications: From Porous Membranes to Solid Electrolytes[J]. Energy Storage Mater., 2019,22:346-375.  

    3. [3]

      Qian J F, Adams B D, Zheng J M, Xu W, Henderson W A, Wang J, Bowden M E, Xu S C, Hu J Z, Zhang J G. Anode-Free Rechargeable Lithium Metal Batteries[J]. Adv. Funct. Mater., 2016,26:7094-7102. doi: 10.1002/adfm.201602353

    4. [4]

      Lin D, Liu Y, Cui Y. Reviving the Lithium Metal Anode for High-Energy Batteries[J]. Nat. Nanotechnol., 2017,12(3):194-206. doi: 10.1038/nnano.2017.16

    5. [5]

      Ren W H, Ding C F, Fu X W, Huang Y. Advanced Gel Polymer Electrolytes for Safe and Durable Lithium Metal Batteries: Challenges, Strategies, and Perspectives[J]. Energy Storage Mater., 2020,34:515-535.  

    6. [6]

      Ghazi Z A, Sun Z, Sun C, Qi F, An B, Li F, Cheng H M. Key Aspects of Lithium Metal Anodes for Lithium Metal Batteries[J]. Small, 2019,15(35)e1900687. doi: 10.1002/smll.201900687

    7. [7]

      Zhao Q, Stalin S, Zhao C Z, Archer L A. Designing Solid-State Electrolytes for Safe, Energy-Dense Batteries[J]. Nat. Rev. Mater., 2020,5(3):1-24. doi: 10.1038/s41578-019-0165-5

    8. [8]

      Pahari D, Puravankara S. Greener, Safer, and Sustainable Batteries: An Insight into Aqueous Electrolytes for Sodium-Ion Batteries[J]. ACS Sustainable Chem. Eng., 2020,8(29):10613-10625. doi: 10.1021/acssuschemeng.0c02145

    9. [9]

      Ding X, Huang X B, Jin J L, Ming H, Wang L M, Ming J. Advanced and Safer Lithium-Ion Battery Based on Sustainable Electrodes[J]. J. Power Sources, 2018,379:53-59. doi: 10.1016/j.jpowsour.2018.01.027

    10. [10]

      Yuan M Q, Liu K. Rational Design on Separators and Liquid Electrolytes for Safer Lithium-Ion Batteries[J]. J. Energy Chem., 2020,43(4):70-82.

    11. [11]

      Cheng X, Pan J, Zhao Y, Liao M, Peng H S. Gel Polymer Electrolytes for Electrochemical Energy Storage[J]. Adv. Energy Mater., 2018,81702184. doi: 10.1002/aenm.201702184

    12. [12]

      Zhai Y Y, Wang X W, Chen Y F, Sang X, Liu H Q, Sheng J L, Wu Y Q, Wang X Y, Li L. Multiscale-Structured Polyvinylidene Fluoride/Polyacrylonitrile/Vermiculite Nanosheets Fibrous Membrane with Uniform Li+ Flux Distribution for Lithium Metal Battery[J]. J. Membr. Sci., 2021,621118996. doi: 10.1016/j.memsci.2020.118996

    13. [13]

      BU A X, TAN Y, FANG R P, LI F, PEI S F, REN W C. A Graphene/PVDF/PP Multilayer Composite Separator for Long-Life and High Power Lithium-Ion batteries[J]. New Carbon Mater., 2017,32(1):63-70.  

    14. [14]

      Zhang K, Xu L L, Jiang J G, Calin N, Lam K F, Zhang S J, Wu H H, Wu G D, Albela B, Bonneviot L. Facile Large-Scale Synthesis of Monodisperse Mesoporous Silica Nanospheres with Tunable Pore Structure[J]. J. Am. Chem. Soc., 2013,135(7):2427-2430. doi: 10.1021/ja3116873

    15. [15]

      Zhao H J, Deng N P, Kang W M, Li Z, Wang G, Cheng B W. Highly Multiscale Structural Poly(vinylidene fluoridehexafluoropropylene)/Poly-m-phenyleneisophthalamide Separator with Enhanced Interface Compatibility and Uniform Lithium-Ion Flux Distribution for Dendrite-Proof Lithium-Metal Batteries[J]. Energy Storage Mater., 2020,26:334-348. doi: 10.1016/j.ensm.2019.11.005

    16. [16]

      Gao S, Wang K L, Wang R X, Jiang M, Han J, Gu T T, Cheng S J, Jiang K. Poly(vinylidene fluoride)-Based Hybrid Gel Polymer Electrolytes for Additive-Free Lithium Sulfur Batteries[J]. J. Mater. Chem. A, 2017,5(34):17889-17895. doi: 10.1039/C7TA05145J

    17. [17]

      Bae J, Li Y, Zhang J, Zhou X, Zhao F, Shi Y, Goodenough J B, Yu G. A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte[J]. Angew. Chem. Int. Ed., 2018,57(8):2096-2100.

    18. [18]

      Zheng J X, Lu J, Amine K, Pan F. Depolarization Effect to Enhance the Performance of Lithium Ions Batteries[J]. Nano Energy, 2017,33:497-507.

    19. [19]

      Zhao Y B, Bai Y, Bai Y P, An M Z, Chen G R, Li W D, Li C, Zhou Y F. A Rational Design of Solid Polymer Electrolyte with High Salt Concentration for Lithium Battery[J]. J. Power Sources, 2018,407:23-30. doi: 10.1016/j.jpowsour.2018.10.045

    20. [20]

      Sannier L, Bouchet R, Rosso M, Tarascon J M. Evaluation of GPE Performances in Lithium Metal Battery Technology by Means of Simple Polarization Tests[J]. J. Power Sources, 2006,158(1):564-570. doi: 10.1016/j.jpowsour.2005.09.026

    21. [21]

      Yan C, Xu R, Qin J L, Yuan H, Xiao Y, Xu L, Huang J Q. 4.5 V High-Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode[J]. Angew. Chem. Int. Ed., 2019,58(43):15164-15164.  

    22. [22]

      Kurc B, Jesionowski T. Modified TiO2-SiO2 Ceramic Filler for a Composite Gel Polymer Electrolytes Working with LiMn2O4[J]. J. Solid State Electrochem., 2015,19(5):1427-1435. doi: 10.1007/s10008-015-2762-6

    23. [23]

      Zhu Y S, Yang Y Q, Fu L J, Wu Y P. A Porous Gel-Type Composite Membrane Reinforced by Nonwoven: Promising Polymer Electrolyte with High Performance for Sodium Ion Batteries[J]. Electrochim. Acta, 2017,224:405-411. doi: 10.1016/j.electacta.2016.12.030

    24. [24]

      Qin H F, Fu K, Zhang Y, Ye Y H, Song M Y, Kuang Y D, Jang S H, Jiang F, Cui L F. Flexible Nanocellulose Enhanced Li+ Conducting Membrane for Solid Polymer Electrolyte[J]. Energy Storage Mater., 2020,28(6058):293-299. doi: 10.1016/j.ensm.2020.03.019

    25. [25]

      Liao H, Chen H, Zhou F, Zhang Z. A Novel SiO2 Nanofiber-Supported Organic-Inorganic Gel Polymer Electrolyte for Dendrite-Free Lithium Metal Batteries[J]. J. Mater. Sci., 2020,55(2018):9504-9515. doi: 10.1007/s10853-020-04634-2

  • 加载中
    1. [1]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    2. [2]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    3. [3]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    11. [11]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    12. [12]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    13. [13]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    17. [17]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    18. [18]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    19. [19]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    20. [20]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

Metrics
  • PDF Downloads(10)
  • Abstract views(840)
  • HTML views(271)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return