Citation: Ji-Qiu YIN, Yong-Lin AN, Xian-Chao JIA, Yang JIAO. Recognition and Cell Imaging of Zn2+ by Coumarin Derivative Fluorescence Sensor[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 368-376. doi: 10.11862/CJIC.2022.039 shu

Recognition and Cell Imaging of Zn2+ by Coumarin Derivative Fluorescence Sensor

  • Corresponding author: Yang JIAO, jiaoyang@dlut.edu.cn
  • Received Date: 30 July 2021
    Revised Date: 17 November 2021

Figures(7)

  • Coumarin-derived fluorescence sensor was designed and synthesized to selectively recognize Zn2+ ions. The structure and fluorescence properties of the sensor were investigated by NMR, MS, fluorescence spectroscopy, and other technical methods. Sensor CANQ exhibited conspicuous fluorescent enhancement response to Zn2+ ion and had the characteristic of fast response, high selectivity, and good biocompatibility. It has been applied to the imaging of Zn2+ ions in MCF-7 cells.
  • 加载中
    1. [1]

      Tang L J, Xia J Y, Zhong K L, Tang Y W, Gao X, Li J R. A Simple AIE-Active Fluorogen for Relay Recognition of Cu2+ and Pyrophosphate through Aggregation-Switching Strategy[J]. Dyes Pigm., 2020,178108379. doi: 10.1016/j.dyepig.2020.108379

    2. [2]

      Chasapis C T, Ntoupa P S A, Spiliopoulou C A, Stefanidou M E. Recent Aspects of the Effects of Zinc on Human Health[J]. Arch. Toxicol., 2020,94:1443-1460. doi: 10.1007/s00204-020-02702-9

    3. [3]

      Chang Y X, Li B, Mei H H, Xu K X, Xie X M, Yang L. A Novel Reversible Fluorescent Probe for Zinc Ion and Bioimaging in Living Cells[J]. Supramol. Chem., 2020,32:93-402.

    4. [4]

      Pluth M D, Tomat E, Lippard S J. Biochemistry of Mobile Zinc and Nitric Oxide Revealed by Fluorescent Sensors[J]. Annu. Rev. Biochem., 2011,80:333-355. doi: 10.1146/annurev-biochem-061009-091643

    5. [5]

      Aydin D. A Novel Turn On Fluorescent Probe for the Determination of Al3+ and Zn2+ Ions and its Cells Applications[J]. Talanta, 2020,210120615. doi: 10.1016/j.talanta.2019.120615

    6. [6]

      Kang T T, Wang H P, Wang X J, Feng L H. A Facile Zn(Ⅱ) Probe Based on Intramolecular Charge Transfer with Fluorescence Red-Shift[J]. Microchem. J., 2019,148:442-448. doi: 10.1016/j.microc.2019.05.035

    7. [7]

      Lin L Y, Hu Y F, Zhang L L, Huang Y, Zhao S L. Photoluminescence Light-Up Detection of Zinc Ion and Imaging in Living Cells Based on the Aggregation Induced Emission Enhancement of Glutathionecapped Copper Nanoclusters[J]. Biosens. Bioelectron., 2017,94:523-529. doi: 10.1016/j.bios.2017.03.038

    8. [8]

      Shang Y F, Wang H L, Bai H. A Coumarin-Based Turn-On Chemosensor for Selective Detection of Zn(Ⅱ) and Application in Live Cell Imaging[J]. Spectrochim. Acta Part A, 2020,228117746. doi: 10.1016/j.saa.2019.117746

    9. [9]

      Frederickson C J, Koh J Y, Bush A I. The Neurobiology of Zinc in Health and Disease[J]. Nat. Rev. Neurosci., 2005,6:449-462.

    10. [10]

      Lippi S L P, Kakalec P A, Smith M L, Flinn J M. Wheel-Running Behavior is Negatively Impacted by Zinc Administration in a Novel Dual Transgenic Mouse Model of AD[J]. Front. Neurosci., 2020,14854. doi: 10.3389/fnins.2020.00854

    11. [11]

      Fang M X, Xia S, Bi J H, Wigstrom T P, Valenzano L, Wang J B, Tanasova M, Luck R L, Liu H Y. Detecting Zn(Ⅱ) Ions in Live Cells with Near-Infrared Fluorescent Probes[J]. Molecules, 2019,241592. doi: 10.3390/molecules24081592

    12. [12]

      Kwon N, Hu Y, Yoon J. Fluorescent Chemosensors for Various Analytes Including Reactive Oxygen Species, Biothiol, Metal Ions, and Toxic Gases[J]. ACS Omega, 2018,3:13731-13751. doi: 10.1021/acsomega.8b01717

    13. [13]

      Prasad A S. Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease[J]. Adv. Nutr., 2013,4:176-190. doi: 10.3945/an.112.003210

    14. [14]

      Pohl P. Determination of Metal Content in Honey by Atomic Absorption and Emission Spectrometries[J]. TrAC-Trend Anal. Chem., 2009,28:117-128. doi: 10.1016/j.trac.2008.09.015

    15. [15]

      Silva E L, Roldan P D S, Gine M F. Simultaneous Preconcentration of Copper, Zinc, Cadmium, and Nickel in Water Samples by Cloud Point Extraction Using 4-(2-Pyridylazo)-resorcinol and Their Determination by Inductively Coupled Plasma Optic Emission Spectrometry[J]. J. Hazard. Mater., 2009,171:1133-1138. doi: 10.1016/j.jhazmat.2009.06.127

    16. [16]

      Murugan A S, Vidhyalakshmi N, Ramesh U, Annaraj J. A Schiff's Base Receptor for Red Fluorescence Live Cell Imaging of Zn2+ Ions in Zebrafish Embryos and Naked Eye Detection of Ni2+ Ions for Bio-Analytical Applications[J]. J. Mater. Chem. B, 2017,5:3195-3200. doi: 10.1039/C7TB00011A

    17. [17]

      Khun N W, Liu E. Linear Sweep Anodic Stripping Voltammetry of Heavy Metals from Nitrogen Doped Tetrahedral Amorphous Carbon Thin Films[J]. Electrochim. Acta, 2009,54:2890-2898. doi: 10.1016/j.electacta.2008.11.014

    18. [18]

      Li W Y, Fang B Q, Jin M, Tian Y. Two-Photon Ratiometric Fluorescence Probe with Enhanced Absorption Cross Section for Imaging and Biosensing of Zinc Ions in Hippocampal Tissue and Zebrafish[J]. Anal. Chem., 2017,89:2553-2560. doi: 10.1021/acs.analchem.6b04781

    19. [19]

      Zhang S W, Adhikari R, Fang M X, Dorh N, Li C, Jaishi M, Zhang J T, Tiwari A, Pati R, Luo F T, Liu H Y. Near-Infrared Fluorescent Probes with Large Stokes Shifts for Sensing Zn(Ⅱ) Ions in Living Cells[J]. ACS Sens., 2016,1:1408-1415. doi: 10.1021/acssensors.6b00490

    20. [20]

      Yan L Q, Li R J, Ma F L, Qi Z J. A Simple Salicylaldehyde-Based Fluorescent "Turn-On" Probe for Selective Detection of Zn2+ in Water Solution and Its Application in Live Cell Imaging[J]. Anal. Methods, 2017,9:1119-1124. doi: 10.1039/C6AY03430F

    21. [21]

      Gan X P, Sun P, Li H, Tian X H, Zhang B W, Wu J Y, Tian Y P, Zhou H P. A Conveniently Prepared and Hypersensitized Small Molecular Fluorescent Probe: Rapidly Detecting Free Zinc Ion in HepG2 Cells and Arabidopsis[J]. Biosens. Bioelectron., 2016,86:393-397. doi: 10.1016/j.bios.2016.06.087

    22. [22]

      Kumar M, Kumar A, Singh M K, Sahu S K, John R P. A Novel Benzidine Based Schiff Base "Turn-On" Fluorescent Chemosensor for Selective Recognition of Zn2+[J]. Sens. Actuators B, 2017,241:1218-1223. doi: 10.1016/j.snb.2016.10.008

    23. [23]

      Jiang G R, Shi F, Jia Y M, Cui S Q, Pu S Z. A Novel Donor-Acceptor Fluorescent Sensor for Zn2+ with High Selectivity and Its Application in Test Paper[J]. J. Fluoresc., 2020,30:1567-1574. doi: 10.1007/s10895-020-02609-9

    24. [24]

      Turnbull W L, Luyt L G. Amino-Substituted 2, 2'-Bipyridine Ligands as Fluorescent Indicators for Zn and Applications for Fluorescence Imaging of Prostate Cells[J]. Chem. Eur. J., 2018,24:14539-14546. doi: 10.1002/chem.201803051

    25. [25]

      Ojida A, Sakamoto T, Inoue M, Fujishima S, Lippens G, Hamachi I. Fluorescent BODIPY-Based Zn(Ⅱ) Complex as a Molecular Probe for Selective Detection of Neurofibrillary Tangles in the Brains of Alzheimer's Disease Patients[J]. J. Am. Chem. Soc., 2009,131:6543-6548. doi: 10.1021/ja9008369

    26. [26]

      Xue J, Tian L M, Yang Z Y. A Novel Rhodamine-Chromone Schiff-Base as Turn-On Fluorescent Probe for the Detection of Zn(Ⅱ) and Fe(Ⅲ) in Different Solutions[J]. J. Photochem. Photobiol. A, 2019,369:77-84. doi: 10.1016/j.jphotochem.2018.10.026

    27. [27]

      Han Z X, Zhang X B, Zhuo L, Gong Y J, Wu X Y, Jin Z, He C M, Jian L X, Zhang J, Shen G L, Yu R Q. Efficient Fluorescence Resonance Energy Transfer-Based Ratiometric Fluorescent Cellular Imaging Probe for Zn2+ Using a Rhodamine Spirolactam as a Trigger[J]. Anal. Chem., 2010,82:3108-3113. doi: 10.1021/ac100376a

    28. [28]

      Yoon S A, Lee J, Lee M H. A Ratiometric Fluorescent Probe for Zn2+ Based on Pyrene-Appendednaphthalimide-Dipicolylamine[J]. Sens. Actuators B, 2018,258:50-55. doi: 10.1016/j.snb.2017.11.126

    29. [29]

      Tian X H, Hussain S, de Pace C, Ruiz-Perez L, Battaglia G. Zn Complexes for Bioimaging and Correlated Applications[J]. Chem. Asian J., 2019,14:509-526.

    30. [30]

      Xie G Q, Shi Y J, Hou F P, Liu H Y, Huang L, Xi P X, Chen F J, Zeng Z Z. A Highly Selective Fluorescent and Colorimetric Chemosensor for Zn and Its Application in Cell Imaging[J]. Eur. J. Inorg. Chem., 2012:327-332.

    31. [31]

      Che W L, Yu T C, Jin D, Ren X Y, Zhu D X, Su Z M, Bryce M R. A Simple Oxazoline as Fluorescent Sensor for Zn2+ in Aqueous Media[J]. Inorg. Chem. Commun., 2016,69:89-93. doi: 10.1016/j.inoche.2016.03.025

    32. [32]

      Cao D X, Liu Z Q, Verwilst P, Koo S, Jangjili P, Kim J S, Lin W Y. Coumarin-Based Small-Molecule Fluorescent Chemosensors[J]. Chem. Rev., 2019,119:10403-10519. doi: 10.1021/acs.chemrev.9b00145

    33. [33]

      Geiβler D, Antonenko Y N, Schmidt R, Keller S, Krylova O O, Wiesner B, Bendig J, Pohl P, Hagen V. (Coumarin-4-yl)methyl Esters as Highly Efficient, Ultrafast Phototriggers for Protons and Their Application to Acidifying Membrane Surfaces[J]. Angew. Chem. Int. Ed., 2005,44:1195-1198. doi: 10.1002/anie.200461567

    34. [34]

      Xu Z C, Liu X, Pan J, Spring D R. Coumarin-Derived Transformable Fluorescent Sensor for Zn2+[J]. Chem. Commun., 2012,48:4764-4766. doi: 10.1039/c2cc30963g

    35. [35]

      Bhattacharyya A, Makhal S C, Guchhait N. Evaluating the Merit of a Diethylamino Coumarinderived Thiosemicarbazone as an Intramolecular Charge Transfer Probe: Efficient Zn(Ⅱ) Mediated Emission Swing from Green to Yellow[J]. Photochem. Photobiol. Sci., 2019,18:2031-2041. doi: 10.1039/C9PP00108E

    36. [36]

      Feng S, Gao Q M, Gao X, Yin J Q, Jiao Y. Fluorescent Sensor for Copper(Ⅱ) Ions Based on Coumarin Derivative and Its Application in Cell Imaging[J]. Inorg. Chem. Commun., 2019,102:51-56. doi: 10.1016/j.inoche.2019.01.012

    37. [37]

      Mani K S, Rajamanikandan R, Murugesapandian B, Shankar R, Sivaraman G, Ilanchelian M, Rajendran S P. Coumarin Based Hydrazone as an ICT-Based Fluorescence Chemosensor for the Detection of Cu2+ Ions and the Application in HeLa Cells[J]. Spectrochim. Acta Part A, 2019,214:170-176. doi: 10.1016/j.saa.2019.02.020

    38. [38]

      Dai X, Zhang T, Du Z F, Cao X J, Chen M Y, Hu S W, Miao J Y, Zhao B X. An Effective Colorimetric and Ratiometric Fluorescent Probe for Bisulfite in Aqueous Solution[J]. Anal. Chim. Acta, 2015,888:138-145. doi: 10.1016/j.aca.2015.07.026

    39. [39]

      Li M X, Feng W Y, Zhang H Y, Feng G Q. An Aza-Coumarin-Hemicyanine Based Near-Infrared Fluorescent Probe for Rapid, Colorimetric and Ratiometric Detection of Bisulfite in Food and Living Cells[J]. Sens. Actuators B, 2017,243:51-58. doi: 10.1016/j.snb.2016.11.132

    40. [40]

      Zhou X, Kwon Y, Kim G, Ryu J H, Yoon J. A Ratiometric Fluorescent Probe Based On a Coumarin-Hemicyanine Scaffold for Sensitive and Selective Detection of Endogenous Peroxynitrite[J]. Biosens. Bioelectron., 2015,64:285-291. doi: 10.1016/j.bios.2014.08.089

    41. [41]

      Wu W L, Zhao X, Xi L L, Huang M F, Zeng W H, Miao J Y, Zhao B X. A Mitochondria-Targeted Fluorescence Probe for Ratiometric Detection of Endogenous Hypochlorite in the Living Cells[J]. Anal. Chim. Acta, 2017,950:178-183. doi: 10.1016/j.aca.2016.11.019

    42. [42]

      Ghosh A C, Weisz K, Schulzke C. Selective Capture of Ni2+ Ions by Naphthalene- and Coumarin-Substituted Dithiolenes[J]. Eur. J. Inorg. Chem., 2016:208-218.

    43. [43]

      Maity S B, Bharadwaj P K. A Molecular Dual Fluorescence-ON Probe for Mg2+ and Zn2+: Higher Selectivity towards Mg2+ over Zn2+ in a Mixture[J]. J. Lumin., 2014,155:21-26. doi: 10.1016/j.jlumin.2014.06.020

    44. [44]

      Jonaghani M Z, Zali-Boeini H, Moradi H. A Coumarin Based Highly Sensitive Fluorescent Chemosensor for Selective Detection of Zinc Ion[J]. Spectrochim. Acta Part A, 2019,207:16-22. doi: 10.1016/j.saa.2018.08.061

    45. [45]

      Albratty M, El-Sharkawy K A, Alam S. Synthesis and Antitumor Activity of Some Novel Thiophene, Pyrimidine, Coumarin, Pyrazole and Pyridine Derivatives[J]. Acta Pharm., 2017,67:15-33. doi: 10.1515/acph-2017-0004

    46. [46]

      Jorge E G, Rayar A M, Barigye S J, Rodriguez M E J, Veitia M S I. Development of an In Silico Model of DPPH Free Radical Scaveng-ing Capacity: Prediction of Antioxidant Activity of Coumarin Type Compounds[J]. Int. J. Mol. Sci., 2016,17881.

    47. [47]

      Wang Y B, Liu H T, Lu P, Mao R, Xue X J, Fan C, She J X. Design, Synthesis, and In Vitro Evaluation of Novel 3, 7-Disubstituted Coumarin Derivatives as Potent Anticancer Agents[J]. Chem. Biol. Drug Des., 2015,86:637-647. doi: 10.1111/cbdd.12531

    48. [48]

      Hasaninejad A, Zare A, Mohammadizadeh M R, Shekouhy M. Lithium Bromide as an Efficient, Green, and Inexpensive Catalyst for the Synthesis of Quinoxaline Derivatives at Room Temperature[J]. Green Chem. Lett. Rev., 2010,3:143-148. doi: 10.1080/17518251003619192

    49. [49]

      Elmes R B P. Bioreductive Fluorescent Imaging Agents: Applications to Tumour Hypoxia[J]. Chem. Commun., 2016,52:8935-8956.

    50. [50]

      Zhang H, Fan J L, Wang J Y, Zhang S Z, Dou B R, Peng X J. An Off-On COX-2-Specific Fluorescent Probe: Targeting the Golgi Apparatus of Cancer Cells[J]. J. Am. Chem. Soc., 2013,135:11663-11669. doi: 10.1021/ja4056905

    51. [51]

      Zhang T, Yin C X, Zhang Y B, Chao J B, Wen G M, Huo F J. Mitochondria-Targeted Reversible Ratiometric Fluorescent Probe for Monitoring SO2/HCHO in Living Cells[J]. Spectrochim. Acta Part A, 2020,234118253.

    52. [52]

      Renault K, Renard P Y, Sabot C. Detection of Biothiols with a Fast-Responsive and Water-Soluble Pyrazolone-Based Fluorogenic Probe[J]. Eur. J. Org. Chem., 2018,46:6494-6498.

    53. [53]

      Mahjoob E, Khalaj A, Ostad S N, Azizi E, Fouladdel S, Tavajohi S, Salehi R, Dowlatabadi R. Investigation of Selective Cytotoxicity and Determination of Ligand Induced Apoptosis of a New Acenaphtho[1, 2-b]quinoxaline Derivative[J]. Arzneimittelforschung, 2009,59:526-531.

    54. [54]

      Lin K T, Lai C K. Phase Crossover in Columnar Tris-(1, 3, 4-oxadiazoles) with Pendant Quinoxalines[J]. Tetrahedron, 2016,72:7579-7588.

    55. [55]

      Kim M S, Jo T G, Yang M, Han J, Lim M H, Kim C. A Fluorescent and Colorimetric Schiff Base Chemosensor for the Detection of Zn2+ and Cu2+: Application in Live Cell Imaging and Colorimetric Test Kit[J]. Spectrochim. Acta Part A, 2019,211:34-43.

    56. [56]

      Roy A, Shee U, Mukherjee A, Mandal S K, Roy P. Rhodamine-Based Dual Chemosensor for Al3+ and Zn2+ Ions with Distinctly Separated Excitation and Emission Wavelengths[J]. ACS Omega, 2019,4:6864-6875.

    57. [57]

      Dey S, Halder S, Mukherjee A, Ghosh K, Roy P. Development of Highly Selective Chemosensor for Al3+: Effect of Substituent and Biological Application[J]. Sens. Actuators B, 2015,215:196-205.

    58. [58]

      Ahamed B N, Ghosh P. A Chelation Enhanced Selective Fluorescence Sensing of Hg2+ by a Simple Quinoline Substituted Tripodal Amide Receptor[J]. Dalton Trans., 2011,40:12540-12547.

    59. [59]

      Zhang Y P, Xue Q H, Yang Y S, Liu X Y, Ma C M, Ru J X, Guo H C. A Chromene Pyrazoline Derivatives Fluorescent Probe for Zn2+ Detection in Aqueous Solution and Living Cells[J]. Inorg. Chim. Acta, 2018,479:128-134.

    60. [60]

      Huo F J, Wu Q, Kang J, Zhang Y B, Yin C X. A Specific Fluorescent Probe for Zinc Ion Based on Thymolphthalein and Its Application in Living Cells[J]. Sens. Actuators B, 2018,262:263-269.

    61. [61]

      Wang P, Wu J. A Highly Sensitive Turn-On Fluorescent Chemosensor for Recognition of Zn(Ⅱ) Ions and Its Application in Live Cells Imaging[J]. J. Photochem. Photobiol. A, 2020,386112111.

  • 加载中
    1. [1]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    2. [2]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    3. [3]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    4. [4]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    5. [5]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    6. [6]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    7. [7]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    8. [8]

      Zhimin SunXin-Hui GuoYue ZhaoQing-Yu MengLi-Juan XingHe-Lue Sun . Dynamically switchable porphyrin-based molecular tweezer for on−off fullerene recognition. Chinese Chemical Letters, 2024, 35(6): 109162-. doi: 10.1016/j.cclet.2023.109162

    9. [9]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    10. [10]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    11. [11]

      Huan YaoJian QinYan-Fang WangSong-Meng WangLiu-Huan YiShi-Yao LiFangfang DuLiu-Pan YangLi-Li Wang . Ultra-highly selective recognition of nucleosides over nucleotides by rational modification of tetralactam macrocycle and its application in enzyme assay. Chinese Chemical Letters, 2024, 35(6): 109154-. doi: 10.1016/j.cclet.2023.109154

    12. [12]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    13. [13]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    14. [14]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    15. [15]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    16. [16]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    17. [17]

      Neng ShiHaonan JiaJixiang ZhangPengyu LuChenglong CaiYixin ZhangLiqiang ZhangNongyue HeWeiran ZhuYan CaiZhangqi FengTing Wang . Accurate expression of neck motion signal by piezoelectric sensor data analysis. Chinese Chemical Letters, 2024, 35(9): 109302-. doi: 10.1016/j.cclet.2023.109302

    18. [18]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    19. [19]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    20. [20]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

Metrics
  • PDF Downloads(5)
  • Abstract views(390)
  • HTML views(74)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return