Citation: Mei-Yin WANG, Yuan-Hang REN, Chun-Bo JIA, Xiang LI, Lin YE, Bin YUE, He-Yong HE. Preparation and Characterization of Mesoporous Cs3PMo12O40 Employed for Catalytic Epimerization Reaction of Aldoses[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 304-312. doi: 10.11862/CJIC.2022.037 shu

Preparation and Characterization of Mesoporous Cs3PMo12O40 Employed for Catalytic Epimerization Reaction of Aldoses

Figures(11)

  • Keggin-type mesoporous Cs3PMo12O40 (m-Cs3PMo) has been prepared by using H3PMo12O40 and CsCl as starting materials and amphiphilic triblock copolymer F127 as a template. The composition, structure, and morphology were characterized by powder X-ray diffraction (XRD), FT-IR, field emission scanning electron microscopy (FESEM), transmission electron microscope (TEM), N2 adsorption-desorption test, and small-angle X-ray scattering (SAXS). The results show that m-Cs3 PMo belongs to the cubic lattice system and owns 2.5 and 6.0 nm wormlike mesoporous pores. The catalytic activity of m-Cs3PMo in aqueous epimerization of D-glucose, D-xylose, and L-arabinose was investigated. The effects of temperature, time, and catalyst amount on the D-glucose epimerization reaction and the recycling performance of the catalyst were also studied. During the recycling process, the catalyst activity and product selectivity did not decrease significantly, which showed good stability of m-Cs3PMo.
  • 加载中
    1. [1]

      Corma A, Iborra S, Velty A. Chemical Routes for the Transformation of Biomass into Chemicals[J]. Chem. Rev., 2007,107(6):2411-2502.

    2. [2]

      Saidur R, Abdelaziz E A, Demirbas A, Hossain M S, Mekhilef S. A Review on Biomass as a Fuel for Boilers[J]. Renewable Sustainable Energy Rev., 2011,15(5):2262-2289. doi: 10.1016/j.rser.2011.02.015

    3. [3]

      Mika L T, Csefalvay E, Nemeth A. Catalytic Conversion of Carbohydrates to Initial Platform Chemicals: Chemistry and Sustainability[J]. Chem. Rev., 2018,118(2):505-613. doi: 10.1021/acs.chemrev.7b00395

    4. [4]

      Wyman C E, Dale B E, Elander R T, Holtzapple M, Ladisch M R, Lee Y Y, Mitchinson C, Saddler J N. Comparative Sugar Recovery and Fermentation Data Following Pretreatment of Poplar Wood by Leading Technologies[J]. Biotechnol. Progr., 2009,25(2):333-339. doi: 10.1002/btpr.142

    5. [5]

      Huber G W, Iborra S, Corma A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering[J]. Chem. Rev., 2006,106(9):4044-4098. doi: 10.1021/cr068360d

    6. [6]

      Goransson K, Soderlind U, He J, Zhang W N. Review of Syngas Production via Biomass DFBGs[J]. Renewable Sustainable Energy Rev., 2011,15(1):482-492. doi: 10.1016/j.rser.2010.09.032

    7. [7]

      De Lasa H, Salaices E, Mazumder J, Lucky R. Catalytic Steam Gasification of Biomass: Catalysts, Thermodynamics and Kinetics[J]. Chem. Rev., 2011,111(9):5404-5433. doi: 10.1021/cr200024w

    8. [8]

      Mohan D, Pittman C U, Steele P H. Pyrolysis of Wood/Biomass for Biooil: A Critical Review[J]. Energy Fuels, 2006,20(3):848-889. doi: 10.1021/ef0502397

    9. [9]

      Van De Vyver S, Geboers J, Jacobs P A, Sels B F. Recent Advances in the Catalytic Conversion of Cellulose[J]. ChemCatChem, 2011,3(1):82-94. doi: 10.1002/cctc.201000302

    10. [10]

      Huang Y B, Fu Y. Hydrolysis of Cellulose to Glucose by Solid Acid Catalysts[J]. Green Chem., 2013,15(5):1095-1111. doi: 10.1039/c3gc40136g

    11. [11]

      Singh R, Shukla A, Tiwari S, Srivastava M. A Review on Delignification of Lignocellulosic Biomass for Enhancement of Ethanol Production Potential[J]. Renewable Sustainable Energy Rev., 2014,32:713-728. doi: 10.1016/j.rser.2014.01.051

    12. [12]

      Zhang X G, Wilson K, Lee A F. Heterogeneously Catalyzed Hydrothermal Processing of C5-C6 Sugars[J]. Chem. Rev., 2016,116(19):12328-12368. doi: 10.1021/acs.chemrev.6b00311

    13. [13]

      Besson M, Gallezot P, Pinel C. Conversion of Biomass into Chemicals over Metal Catalysts[J]. Chem. Rev., 2014,114(3):1827-1870.

    14. [14]

      Delidovich I, Palkovits R. Catalytic Isomerization of Biomass-Derived Aldoses: A Review[J]. ChemSusChem, 2016,9(6):547-561. doi: 10.1002/cssc.201501577

    15. [15]

      Bayu A, Abudula A, Guan G Q. Reaction Pathways and Selectivity in Chemo-Catalytic Conversion of Biomass-Derived Carbohydrates to High-Value Chemicals: A Review[J]. Fuel Process. Technol., 2019,196106162. doi: 10.1016/j.fuproc.2019.106162

    16. [16]

      Angyal S J. A Short Note on the Epimerization of Aldoses[J]. Carbohydr. Res., 1997,300(3):279-281. doi: 10.1016/S0008-6215(97)00058-X

    17. [17]

      Kabyemela B M, Adschiri T, Malaluan R M, Arai K. Kinetics of Glucose Epimerization and Decomposition in Subcritical and Supercritical Water[J]. Ind. Eng. Chem. Res., 1997,36(5):1552-1558. doi: 10.1021/ie960250h

    18. [18]

      Hu X, Shi Y N, Zhang P, Miao M, Zhang T, Jiang B. D-Mannose: Properties, Production, and Applications: An Overview[J]. Compr. Rev. Food Sci. Food Saf., 2016,15(4):773-785.

    19. [19]

      Park C S, Kim J E, Choi J G, Oh D K. Characterization of a Recombinant Cellobiose 2-Epimerase from Caldicellulosiruptor Saccharolyticus and Its Application in the Production of Mannose from Glucose[J]. Appl. Microbiol. Biotechnol., 2011,92(6):1187-1196. doi: 10.1007/s00253-011-3403-3

    20. [20]

      Bilik V. Reactions of Saccharides Catalyzed by Molybdate Ions. 2. Epimerization of D-Glucose and D-Mannose[J]. Chemicke Zvesti, 1972,26(2):183-186.

    21. [21]

      Hayes M L, Pennings N J, Serianni A S, Barker R. Epimerization of Aldoses by Molybdate Involving a Novel Rearrangement of the Carbon Skeleton[J]. J. Am. Chem. Soc., 1982,104(24):6764-6769. doi: 10.1021/ja00388a047

    22. [22]

      Ju F, VanderVelde D, Nikolla E. Molybdenum-Based Polyoxometalates as Highly Active and Selective Catalysts for the Epimerization of Aldoses[J]. ACS Catal., 2014,4(5):1358-1364. doi: 10.1021/cs401253z

    23. [23]

      Kockritz A, Kant M, Walter M, Martin A. Rearrangement of Glucose to Mannose Catalysed by Polymer-Supported Mo Catalysts in the Liquid Phase[J]. Appl. Catal. A, 2008,334(1/2):112-118. doi: 10.1016/j.apcata.2007.09.044

    24. [24]

      Hu H, Liu S, Zhang W, An J, Xia H. Efficient Epimerization of Glucose to Mannose over Molybdenum-Based Catalyst in Aqueous Media[J]. ChemistrySelect, 2020,5(5):1728-1733.

    25. [25]

      Takagaki A, Furusato S, Kikuchi R, Oyama S T. Efficient Epimerization of Aldoses Using Layered Niobium Molybdates[J]. ChemSusChem, 2015,8(22):3769-3772.

    26. [26]

      Okuhara T, Watanabe H, Nishimura T, Inumaru K, Misono M. Microstructure of Cesium Hydrogen Salts of 12-Tungstophosphoric Acid Relevant to Novel Acid Catalysis[J]. Chem. Mater., 2000,12(8):2230-2238.

    27. [27]

      Ito T, Inumaru K, Misono M. Epitaxially Self Assembled Aggregates of Polyoxotungstate Nanocrystallites, (NH4)3PW12O40: Synthesis by Homogeneous Precipitation Using Decomposition of Urea[J]. Chem. Mater., 2001,13(3):824-831. doi: 10.1002/chin.200128028

    28. [28]

      Borghese S, Louis B, Blanc A, Pale P. Design of Silver-Heteropolyacids: Toward the Molecular Control of Reactivity in Organic Chemistry[J]. Catal. Sci. Technol., 2011,1(6):981-986. doi: 10.1002/chin.201201027

    29. [29]

      Jagadeeswaraiah K, Kumar C R, Prasad P S S, Lingaiah N. Incorporation of Zn2+ Ions into the Secondary Structure of Heteropoly Tungstate: Catalytic Efficiency for Synthesis of Glycerol Carbonate from Glycerol and Urea[J]. Catal. Sci. Technol., 2014,4(9):2969-2977.

    30. [30]

      WANG M Y, HUANG D F, CHEN X, ZHOU J F, REN Y H, YE L, YUE B, HE H Y. Liquid Phase Assembly of Mesoporous CsxH3-xPW12O40 and Characterization of Their Acidity[J]. Chem. J. Chinese Univesities, 2021,42(9):2734-2741.  

    31. [31]

      Ilbeygi H, Kim I Y, Kim M G, Cha W, Kumar P S M, Park D H, Vinu A. Highly Crystalline Mesoporous Phosphotungstic Acid: A High-Performance Electrode Material for Energy-Storage Applications[J]. Angew. Chem. Int. Ed., 2019,58(32):10849-10854. doi: 10.1002/anie.201908558

    32. [32]

      Geboers J, Van de Vyver S, Carpentier K, Jacobs P, Sels B. Hydrolytic Hydrogenation of Cellulose with Hydrotreated Caesium Salts of Heteropoly Acids and Ru/C[J]. Green Chem., 2011,13(8):2167-2174. doi: 10.1039/c1gc15350a

    33. [33]

      Sun M, Zhang J Z, Cao C J, Zhang Q H, Wang Y, Wan H L. Significant Effect of Acidity on Catalytic Behaviors of Cs-Substituted Polyoxometalates for Oxidative Dehydrogenation of Propane[J]. Appl. Catal. A, 2008,349(1/2):212-221. doi: 10.1016/j.apcata.2008.07.035

    34. [34]

      Wu W J, Nancollas G H. A New Understanding of the Relationship between Solubility and Particle Size[J]. J. Solution Chem., 1998,27(6):521-531. doi: 10.1023/A:1022678505433

    35. [35]

      Ely D R, Garcia R E, Thommes M. Ostwald-Freundlich Diffusion-Limited Dissolution Kinetics of Nanoparticles[J]. Powder Technol., 2014,257:120-123. doi: 10.1016/j.powtec.2014.01.095

    36. [36]

      Cybulski A, Kuster B F M, Marin G B. The Kinetics of the Molybdate-Catalyzed Epimerization of D-Glucose and D-Mannose in Aqueous-Solutions[J]. J. Mol. Catal., 1991,68(1):87-103. doi: 10.1016/0304-5102(91)80063-9

    37. [37]

      Rojas-Buzo S, Corma A, Boronat M, Moliner M. Unraveling the Reaction Mechanism and Active Sites of Metal-Organic Frameworks for Glucose Transformations in Water: Experimental and Theoretical Studies[J]. ACS Sustainable Chem. Eng., 2020,8(43):16143-16155. doi: 10.1021/acssuschemeng.0c04398

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    11. [11]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    12. [12]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    13. [13]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    14. [14]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    15. [15]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    16. [16]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    17. [17]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(3)
  • Abstract views(606)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return