Citation: Ce XU, Kang DU, Lin TAN, Xiang-Hong LI, Bing-Guang ZHANG, Ding-Guo TANG. Cycloruthenated Complex Based on 3-Ethyl-1-(thiophen-2-yl)imidazolium: Synthesis and Recognizing Hg2+[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 220-226. doi: 10.11862/CJIC.2022.036 shu

Cycloruthenated Complex Based on 3-Ethyl-1-(thiophen-2-yl)imidazolium: Synthesis and Recognizing Hg2+

Figures(10)

  • A new cyclometalated ruthenium complex[Ru(L)(bpy)2]+ (1) was synthesized by using 3-ethyl-1-(thiophen-2-yl)imidazolium (L) and 2, 2'-bipyridine (bpy), which has been characterized by NMR and HRMS. The interactions between complex 1 and common metal ions were investigated by UV-Vis absorption spectra. Only upon the addition of Hg2+, the absorption was blue-shifted from 548 to 448 nm companied with the solution color varying from red to yellow. By analyzing absorption and MS spectra, the mechanism of complex 1 sensing to Hg2+ could be attributed to the possible conversion of coordination mode from Ru—C to Ru—S resulting from the interaction between Hg2+ and S.
  • 加载中
    1. [1]

      Constable E C. Cyclometallated Complexes Incorporating a Heterocyclic Donor Atom; The Interface of Coordination Chemistry and Organometallic Chemistry[J]. Polyhedron, 1984,3(9/10):1037-1057.

    2. [2]

      Djukic J P, Sortais J B, Barloy L, Pfeffer M. Cycloruthenated Compounds-Synthesis and Applications[J]. Eur. J. Inorg. Chem., 2009(7):817-853.

    3. [3]

      Muro-Small M L, Yarnell J E, McCusker C E, Castellano F N. Spectroscopy and Photophysics in Cyclometalated Ru-Bis(bipyridyl) Complexes[J]. Eur. J. Inorg. Chem., 2012,2012(25):4004-4011. doi: 10.1002/ejic.201200460

    4. [4]

      Reveco P, Cherry W R, Medley J, Garber A, Gale R J, Selbin J. Cyclometalated Complexes of Ruthenium. 3. Spectral, Electrochemical and Two-Dimensional Proton NMR of[Ru(bpy)2(cyclometalating ligand)]+[J]. Inorg. Chem., 1986,25(11):1842-1845. doi: 10.1021/ic00231a025

    5. [5]

      Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M. New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications[J]. J. Am. Chem. Soc., 2009,131(16):5930-5934. doi: 10.1021/ja9002684

    6. [6]

      Bomben P G, Robson K C D, Koivisto B D, Berlinguette C P. Cyclometalated Ruthenium Chromophores for the Dye-Sensitized Solar Cell[J]. Coord. Chem. Rev., 2012,256(15/16):1438-1450.

    7. [7]

      Huang J F, Liu J M, Su P Y, Chen Y F, Shen Y, Xiao L M, Kuang D B, Su C Y. Highly Efficient and Stable Cyclometalated Ruthenium Complexes as Sensitizers for Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2015,174:494-501. doi: 10.1016/j.electacta.2015.06.023

    8. [8]

      Nguyen T D, Lan Y P, Wu C G. High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells[J]. Inorg. Chem., 2018,57(3):1527-1534. doi: 10.1021/acs.inorgchem.7b02862

    9. [9]

      Li Z J, Yao C J, Zhong Y W. Near-Infrared Electrochromism of Multilayer Films of a Cyclometalated Diruthenium Complex Prepared by Layer-by-Layer Deposition on Metal Oxide Substrates[J]. Sci. China: Chem., 2019,62(12):1675-1685. doi: 10.1007/s11426-019-9640-1

    10. [10]

      YAO C J, ZHONG Y W. Near Infrared Electrical Discoloration Based on Mixed Price Double Ruthenium Complex[J]. Chin. Sci. Bull., 2014,59(17):1591-1602.  

    11. [11]

      Lv Z, Wei H J, Li Q, Su X L, Liu S J, Zhang K Y, Huang , Lv W, Zhao Q, Li X H, Huang W. Achieving Efficient Photodynamic Therapy under both Normoxia and Hypoxia Using Cyclometalated Ru Photosensitizer through Type Ⅰ Photochemical Process[J]. Chem. Sci., 2018,9(2):502-512. doi: 10.1039/C7SC03765A

    12. [12]

      Huang H Y, Zhang P Y, Yu B L, Chen Y, Wang J Q, Ji L N, Chao H. Targeting Nucleus DNA with a Cyclometalated Dipyridophenazineruthenium Complex[J]. J. Med. Chem., 2014,57(21):8971-8983. doi: 10.1021/jm501095r

    13. [13]

      Wade C R, Gabbaï F P. Cyanide Anion Binding by a Triarylborane at the Outer Rim of a Cyclometalated Ruthenium Cationic Complex[J]. Inorg. Chem., 2010,49(2):714-720. doi: 10.1021/ic9020349

    14. [14]

      Cheng X J, Li J P, Li X H, Zhang D H, Zhang H J, Zhang A Q, Huang H, Lian J S. A Highly Sensitive Sensor Based on Hollow Particles for the Detection, Adsorption and Removal of Hg2+ Ions[J]. J. Mater. Chem., 2012,22(45):24102-24108. doi: 10.1039/c2jm35427f

    15. [15]

      Lo H S, Lo K W, Yeung C F, Wong C Y. Rapid Visual and Spectrophotometric Nitrite Detection by Cyclometalated Ruthenium Complex[J]. Anal. Chim. Acta, 2017,990:135-140. doi: 10.1016/j.aca.2017.07.018

    16. [16]

      Xie X K, Huynh H V. Cyclometallated Ruthenium Complexes with Ditopic Thienyl-NHC Ligands: Syntheses and Alkyne Annulations[J]. Org. Chem. Front., 2015,2(12):1598-1603. doi: 10.1039/C5QO00292C

    17. [17]

      Reveco P, Schmehl R H, Cherry W R, Fronczek F R, Selbin J. Cyclometalated Complexes of Ruthenium. 2. Spectral and Electrochemical Properties and X-ray Structure of Bis(2, 2'-bipyridine)(4-nitro-2-(2-pyridyl)phenyl)ruthenium[J]. Inorg. Chem., 1985,24(24):4078-4082. doi: 10.1021/ic00218a023

    18. [18]

      Su X L, Zeng R Q, Li X H, Dang W J, Yao K Y, Tang D G. Cycloruthenated Complexes: pH-Dependent Reversible Cyclometallation and Reactions with Nitrite at Octahedral Ruthenium Centers[J]. Dalton Trans., 2016,45(17):7450-7459. doi: 10.1039/C6DT00576D

    19. [19]

      Zhao Q, Cao T Y, Li F Y, Li X H, Jing H, Yi T, Huang C H. A Highly Selective and Multisignaling Optical-Electrochemical Sensor for Hg2+ Based on a Phosphorescent Iridium Complex[J]. Organometallics, 2007,26(8):2077-2081. doi: 10.1021/om061031r

    20. [20]

      Wu Y Q, Jing H, Dong Z S, Zhao Q, Wu H Z, Li F Y. Ratiometric Phosphorescence Imaging of Hg in Living Cells Based on a Neu-tral Iridium Complex[J]. Inorg. Chem., 2011,50(16):7412-7420. doi: 10.1021/ic102082k

    21. [21]

      Constable E C, Dunne S J, Rees D G F, Schmitt C X. Reversible Cyclometallation at a Ruthenium Centre[J]. Chem. Commun., 1996,10:1169-1170.

    22. [22]

      Moorlag C, Clot O, Wolf M O, Patrick B O. Switchable Thiophene Coordination in Ru Bipyridyl Phosphinoterthiophene Complexes[J]. Chem. Commun., 2002,24:3028-3029.

    23. [23]

      Moorlag C, Wolf M O, Bohne C, Patrick B O. Reversible Molecular Switching of Ruthenium Bis(bipyridyl) Groups Bonded to Oligothiophenes: Effect on Electrochemical and Spectroscopic Properties[J]. J. Am. Chem. Soc., 2005,127(17):6382-6393. doi: 10.1021/ja043573a

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    8. [8]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    9. [9]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    10. [10]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    11. [11]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    12. [12]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    18. [18]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(3)
  • Abstract views(446)
  • HTML views(102)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return