Cycloruthenated Complex Based on 3-Ethyl-1-(thiophen-2-yl)imidazolium: Synthesis and Recognizing Hg2+
- Corresponding author: Xiang-Hong LI, lixhchem@mail.scuec.edu.cn
Citation:
Ce XU, Kang DU, Lin TAN, Xiang-Hong LI, Bing-Guang ZHANG, Ding-Guo TANG. Cycloruthenated Complex Based on 3-Ethyl-1-(thiophen-2-yl)imidazolium: Synthesis and Recognizing Hg2+[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(2): 220-226.
doi:
10.11862/CJIC.2022.036
Constable E C. Cyclometallated Complexes Incorporating a Heterocyclic Donor Atom; The Interface of Coordination Chemistry and Organometallic Chemistry[J]. Polyhedron, 1984,3(9/10):1037-1057.
Djukic J P, Sortais J B, Barloy L, Pfeffer M. Cycloruthenated Compounds-Synthesis and Applications[J]. Eur. J. Inorg. Chem., 2009(7):817-853.
Muro-Small M L, Yarnell J E, McCusker C E, Castellano F N. Spectroscopy and Photophysics in Cyclometalated RuⅡ-Bis(bipyridyl) Complexes[J]. Eur. J. Inorg. Chem., 2012,2012(25):4004-4011. doi: 10.1002/ejic.201200460
Reveco P, Cherry W R, Medley J, Garber A, Gale R J, Selbin J. Cyclometalated Complexes of Ruthenium. 3. Spectral, Electrochemical and Two-Dimensional Proton NMR of[Ru(bpy)2(cyclometalating ligand)]+[J]. Inorg. Chem., 1986,25(11):1842-1845. doi: 10.1021/ic00231a025
Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M. New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications[J]. J. Am. Chem. Soc., 2009,131(16):5930-5934. doi: 10.1021/ja9002684
Bomben P G, Robson K C D, Koivisto B D, Berlinguette C P. Cyclometalated Ruthenium Chromophores for the Dye-Sensitized Solar Cell[J]. Coord. Chem. Rev., 2012,256(15/16):1438-1450.
Huang J F, Liu J M, Su P Y, Chen Y F, Shen Y, Xiao L M, Kuang D B, Su C Y. Highly Efficient and Stable Cyclometalated Ruthenium Complexes as Sensitizers for Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2015,174:494-501. doi: 10.1016/j.electacta.2015.06.023
Nguyen T D, Lan Y P, Wu C G. High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells[J]. Inorg. Chem., 2018,57(3):1527-1534. doi: 10.1021/acs.inorgchem.7b02862
Li Z J, Yao C J, Zhong Y W. Near-Infrared Electrochromism of Multilayer Films of a Cyclometalated Diruthenium Complex Prepared by Layer-by-Layer Deposition on Metal Oxide Substrates[J]. Sci. China: Chem., 2019,62(12):1675-1685. doi: 10.1007/s11426-019-9640-1
YAO C J, ZHONG Y W. Near Infrared Electrical Discoloration Based on Mixed Price Double Ruthenium Complex[J]. Chin. Sci. Bull., 2014,59(17):1591-1602.
Lv Z, Wei H J, Li Q, Su X L, Liu S J, Zhang K Y, Huang , Lv W, Zhao Q, Li X H, Huang W. Achieving Efficient Photodynamic Therapy under both Normoxia and Hypoxia Using Cyclometalated Ru Photosensitizer through Type Ⅰ Photochemical Process[J]. Chem. Sci., 2018,9(2):502-512. doi: 10.1039/C7SC03765A
Huang H Y, Zhang P Y, Yu B L, Chen Y, Wang J Q, Ji L N, Chao H. Targeting Nucleus DNA with a Cyclometalated Dipyridophenazineruthenium Complex[J]. J. Med. Chem., 2014,57(21):8971-8983. doi: 10.1021/jm501095r
Wade C R, Gabbaï F P. Cyanide Anion Binding by a Triarylborane at the Outer Rim of a Cyclometalated Ruthenium Cationic Complex[J]. Inorg. Chem., 2010,49(2):714-720. doi: 10.1021/ic9020349
Cheng X J, Li J P, Li X H, Zhang D H, Zhang H J, Zhang A Q, Huang H, Lian J S. A Highly Sensitive Sensor Based on Hollow Particles for the Detection, Adsorption and Removal of Hg2+ Ions[J]. J. Mater. Chem., 2012,22(45):24102-24108. doi: 10.1039/c2jm35427f
Lo H S, Lo K W, Yeung C F, Wong C Y. Rapid Visual and Spectrophotometric Nitrite Detection by Cyclometalated Ruthenium Complex[J]. Anal. Chim. Acta, 2017,990:135-140. doi: 10.1016/j.aca.2017.07.018
Xie X K, Huynh H V. Cyclometallated Ruthenium Complexes with Ditopic Thienyl-NHC Ligands: Syntheses and Alkyne Annulations[J]. Org. Chem. Front., 2015,2(12):1598-1603. doi: 10.1039/C5QO00292C
Reveco P, Schmehl R H, Cherry W R, Fronczek F R, Selbin J. Cyclometalated Complexes of Ruthenium. 2. Spectral and Electrochemical Properties and X-ray Structure of Bis(2, 2'-bipyridine)(4-nitro-2-(2-pyridyl)phenyl)ruthenium[J]. Inorg. Chem., 1985,24(24):4078-4082. doi: 10.1021/ic00218a023
Su X L, Zeng R Q, Li X H, Dang W J, Yao K Y, Tang D G. Cycloruthenated Complexes: pH-Dependent Reversible Cyclometallation and Reactions with Nitrite at Octahedral Ruthenium Centers[J]. Dalton Trans., 2016,45(17):7450-7459. doi: 10.1039/C6DT00576D
Zhao Q, Cao T Y, Li F Y, Li X H, Jing H, Yi T, Huang C H. A Highly Selective and Multisignaling Optical-Electrochemical Sensor for Hg2+ Based on a Phosphorescent Iridium Complex[J]. Organometallics, 2007,26(8):2077-2081. doi: 10.1021/om061031r
Wu Y Q, Jing H, Dong Z S, Zhao Q, Wu H Z, Li F Y. Ratiometric Phosphorescence Imaging of Hg in Living Cells Based on a Neu-tral Iridium Complex[J]. Inorg. Chem., 2011,50(16):7412-7420. doi: 10.1021/ic102082k
Constable E C, Dunne S J, Rees D G F, Schmitt C X. Reversible Cyclometallation at a Ruthenium Centre[J]. Chem. Commun., 1996,10:1169-1170.
Moorlag C, Clot O, Wolf M O, Patrick B O. Switchable Thiophene Coordination in Ru Bipyridyl Phosphinoterthiophene Complexes[J]. Chem. Commun., 2002,24:3028-3029.
Moorlag C, Wolf M O, Bohne C, Patrick B O. Reversible Molecular Switching of Ruthenium Bis(bipyridyl) Groups Bonded to Oligothiophenes: Effect on Electrochemical and Spectroscopic Properties[J]. J. Am. Chem. Soc., 2005,127(17):6382-6393. doi: 10.1021/ja043573a
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Qingjun PAN , Zhongliang GONG , Yuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365
Ke QIAO , Yanlin LI , Shengli HUANG , Guoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
Hong CAI , Jiewen WU , Jingyun LI , Lixian CHEN , Siqi XIAO , Dan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Wenjing ZHANG , Xiaoqing WANG , Zhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254
Hong Wu , Yuxi Wang , Hongyan Feng , Xiaokui Wang , Bangkun Jin , Xuan Lei , Qianghua Wu , Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Jiaxun Wu , Mingde Li , Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098
Zuozhong Liang , Lingling Wei , Yiwen Cao , Yunhan Wei , Haimei Shi , Haoquan Zheng , Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103
Rui Li , Huan Liu , Yinan Jiao , Shengjian Qin , Jie Meng , Jiayu Song , Rongrong Yan , Hang Su , Hengbin Chen , Zixuan Shang , Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Guojie Xu , Fang Yu , Yunxia Wang , Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Hongling Yuan , Jialin Xie , Jiawei Wang , Jixiang Zhao , Jiayan Liu , Qing Feng , Wei Qi , Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041
VCH3CN∶VHEPES=2∶1, c1=20 µmol·L-1
VCH3CN∶VHEPES=2∶1, c1=20 µmol·L-1
VCH3CN∶VHEPES=2∶1, pH=6.98, c1=20 µmol·L-1; Each UV-Vis spectrum was measured after adding Hg2+ for 3 min; Inset: linear correlation curve of ΔA546 nm of complex 1 with Hg2+ concentration
VCH3CN∶VHEPES=2∶1, pH=7.00, c1=20 µmol·L-1
c1+cHg2+=40 µmol·L-1
VCH3CN∶VHEPES=2∶1, c1=20 µmol·L-1; Inset: MS spectrum of complex 1 at pH 6.98 in the presence of Hg2+