Citation: Ce XU, Kang DU, Lin TAN, Xiang-Hong LI, Bing-Guang ZHANG, Ding-Guo TANG. Cycloruthenated Complex Based on 3-Ethyl-1-(thiophen-2-yl)imidazolium: Synthesis and Recognizing Hg2+[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 220-226. doi: 10.11862/CJIC.2022.036 shu

Cycloruthenated Complex Based on 3-Ethyl-1-(thiophen-2-yl)imidazolium: Synthesis and Recognizing Hg2+

Figures(10)

  • A new cyclometalated ruthenium complex[Ru(L)(bpy)2]+ (1) was synthesized by using 3-ethyl-1-(thiophen-2-yl)imidazolium (L) and 2, 2'-bipyridine (bpy), which has been characterized by NMR and HRMS. The interactions between complex 1 and common metal ions were investigated by UV-Vis absorption spectra. Only upon the addition of Hg2+, the absorption was blue-shifted from 548 to 448 nm companied with the solution color varying from red to yellow. By analyzing absorption and MS spectra, the mechanism of complex 1 sensing to Hg2+ could be attributed to the possible conversion of coordination mode from Ru—C to Ru—S resulting from the interaction between Hg2+ and S.
  • 加载中
    1. [1]

      Constable E C. Cyclometallated Complexes Incorporating a Heterocyclic Donor Atom; The Interface of Coordination Chemistry and Organometallic Chemistry[J]. Polyhedron, 1984,3(9/10):1037-1057.

    2. [2]

      Djukic J P, Sortais J B, Barloy L, Pfeffer M. Cycloruthenated Compounds-Synthesis and Applications[J]. Eur. J. Inorg. Chem., 2009(7):817-853.

    3. [3]

      Muro-Small M L, Yarnell J E, McCusker C E, Castellano F N. Spectroscopy and Photophysics in Cyclometalated Ru-Bis(bipyridyl) Complexes[J]. Eur. J. Inorg. Chem., 2012,2012(25):4004-4011. doi: 10.1002/ejic.201200460

    4. [4]

      Reveco P, Cherry W R, Medley J, Garber A, Gale R J, Selbin J. Cyclometalated Complexes of Ruthenium. 3. Spectral, Electrochemical and Two-Dimensional Proton NMR of[Ru(bpy)2(cyclometalating ligand)]+[J]. Inorg. Chem., 1986,25(11):1842-1845. doi: 10.1021/ic00231a025

    5. [5]

      Bessho T, Yoneda E, Yum J H, Guglielmi M, Tavernelli I, Imai H, Rothlisberger U, Nazeeruddin M K, Grätzel M. New Paradigm in Molecular Engineering of Sensitizers for Solar Cell Applications[J]. J. Am. Chem. Soc., 2009,131(16):5930-5934. doi: 10.1021/ja9002684

    6. [6]

      Bomben P G, Robson K C D, Koivisto B D, Berlinguette C P. Cyclometalated Ruthenium Chromophores for the Dye-Sensitized Solar Cell[J]. Coord. Chem. Rev., 2012,256(15/16):1438-1450.

    7. [7]

      Huang J F, Liu J M, Su P Y, Chen Y F, Shen Y, Xiao L M, Kuang D B, Su C Y. Highly Efficient and Stable Cyclometalated Ruthenium Complexes as Sensitizers for Dye-Sensitized Solar Cells[J]. Electrochim. Acta, 2015,174:494-501. doi: 10.1016/j.electacta.2015.06.023

    8. [8]

      Nguyen T D, Lan Y P, Wu C G. High-Efficiency Cycloruthenated Sensitizers for Dye-Sensitized Solar Cells[J]. Inorg. Chem., 2018,57(3):1527-1534. doi: 10.1021/acs.inorgchem.7b02862

    9. [9]

      Li Z J, Yao C J, Zhong Y W. Near-Infrared Electrochromism of Multilayer Films of a Cyclometalated Diruthenium Complex Prepared by Layer-by-Layer Deposition on Metal Oxide Substrates[J]. Sci. China: Chem., 2019,62(12):1675-1685. doi: 10.1007/s11426-019-9640-1

    10. [10]

      YAO C J, ZHONG Y W. Near Infrared Electrical Discoloration Based on Mixed Price Double Ruthenium Complex[J]. Chin. Sci. Bull., 2014,59(17):1591-1602.  

    11. [11]

      Lv Z, Wei H J, Li Q, Su X L, Liu S J, Zhang K Y, Huang , Lv W, Zhao Q, Li X H, Huang W. Achieving Efficient Photodynamic Therapy under both Normoxia and Hypoxia Using Cyclometalated Ru Photosensitizer through Type Ⅰ Photochemical Process[J]. Chem. Sci., 2018,9(2):502-512. doi: 10.1039/C7SC03765A

    12. [12]

      Huang H Y, Zhang P Y, Yu B L, Chen Y, Wang J Q, Ji L N, Chao H. Targeting Nucleus DNA with a Cyclometalated Dipyridophenazineruthenium Complex[J]. J. Med. Chem., 2014,57(21):8971-8983. doi: 10.1021/jm501095r

    13. [13]

      Wade C R, Gabbaï F P. Cyanide Anion Binding by a Triarylborane at the Outer Rim of a Cyclometalated Ruthenium Cationic Complex[J]. Inorg. Chem., 2010,49(2):714-720. doi: 10.1021/ic9020349

    14. [14]

      Cheng X J, Li J P, Li X H, Zhang D H, Zhang H J, Zhang A Q, Huang H, Lian J S. A Highly Sensitive Sensor Based on Hollow Particles for the Detection, Adsorption and Removal of Hg2+ Ions[J]. J. Mater. Chem., 2012,22(45):24102-24108. doi: 10.1039/c2jm35427f

    15. [15]

      Lo H S, Lo K W, Yeung C F, Wong C Y. Rapid Visual and Spectrophotometric Nitrite Detection by Cyclometalated Ruthenium Complex[J]. Anal. Chim. Acta, 2017,990:135-140. doi: 10.1016/j.aca.2017.07.018

    16. [16]

      Xie X K, Huynh H V. Cyclometallated Ruthenium Complexes with Ditopic Thienyl-NHC Ligands: Syntheses and Alkyne Annulations[J]. Org. Chem. Front., 2015,2(12):1598-1603. doi: 10.1039/C5QO00292C

    17. [17]

      Reveco P, Schmehl R H, Cherry W R, Fronczek F R, Selbin J. Cyclometalated Complexes of Ruthenium. 2. Spectral and Electrochemical Properties and X-ray Structure of Bis(2, 2'-bipyridine)(4-nitro-2-(2-pyridyl)phenyl)ruthenium[J]. Inorg. Chem., 1985,24(24):4078-4082. doi: 10.1021/ic00218a023

    18. [18]

      Su X L, Zeng R Q, Li X H, Dang W J, Yao K Y, Tang D G. Cycloruthenated Complexes: pH-Dependent Reversible Cyclometallation and Reactions with Nitrite at Octahedral Ruthenium Centers[J]. Dalton Trans., 2016,45(17):7450-7459. doi: 10.1039/C6DT00576D

    19. [19]

      Zhao Q, Cao T Y, Li F Y, Li X H, Jing H, Yi T, Huang C H. A Highly Selective and Multisignaling Optical-Electrochemical Sensor for Hg2+ Based on a Phosphorescent Iridium Complex[J]. Organometallics, 2007,26(8):2077-2081. doi: 10.1021/om061031r

    20. [20]

      Wu Y Q, Jing H, Dong Z S, Zhao Q, Wu H Z, Li F Y. Ratiometric Phosphorescence Imaging of Hg in Living Cells Based on a Neu-tral Iridium Complex[J]. Inorg. Chem., 2011,50(16):7412-7420. doi: 10.1021/ic102082k

    21. [21]

      Constable E C, Dunne S J, Rees D G F, Schmitt C X. Reversible Cyclometallation at a Ruthenium Centre[J]. Chem. Commun., 1996,10:1169-1170.

    22. [22]

      Moorlag C, Clot O, Wolf M O, Patrick B O. Switchable Thiophene Coordination in Ru Bipyridyl Phosphinoterthiophene Complexes[J]. Chem. Commun., 2002,24:3028-3029.

    23. [23]

      Moorlag C, Wolf M O, Bohne C, Patrick B O. Reversible Molecular Switching of Ruthenium Bis(bipyridyl) Groups Bonded to Oligothiophenes: Effect on Electrochemical and Spectroscopic Properties[J]. J. Am. Chem. Soc., 2005,127(17):6382-6393. doi: 10.1021/ja043573a

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    3. [3]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    4. [4]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    5. [5]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    6. [6]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    7. [7]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

    8. [8]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    13. [13]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    14. [14]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    17. [17]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    18. [18]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

Metrics
  • PDF Downloads(3)
  • Abstract views(607)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return