Citation: Shao-Zhuang ZHANG, Chi-Xiao MA, Hai-Yang GUO, Jian-Hui SHE, Jun-Yong ZHANG, Yan-Bo SHI, Guo-Dong LI, Xiao-Ming REN, Jing-Li XIE. Preparation and Characterization of Copper Complexes of Schiff Base Ligands Synthesized In Situ from Spiropyran Derivative[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 353-360. doi: 10.11862/CJIC.2022.032 shu

Preparation and Characterization of Copper Complexes of Schiff Base Ligands Synthesized In Situ from Spiropyran Derivative

Figures(8)

  • By virtue of Schiff base ligands bis(2-(methyliminomethyl)-4-nitro-phenol) dianion (L1)/2-((3-aminopropylimino)-methyl)-4-nitro-phenol monoanion (L2) that derived from photochromic molecule 2-(3', 3'-dimethyl-6-nitrospiro(chromene-2, 2'-indolin)-1'-yl)ethanol, two metal-organic complexes[Cu(L1)] (1) and[Cu(L2)(1, 3-DAP)]NO3 (2) have been successfully fabricated through in situ ligand reaction in the presence of Cu2+. These complexes were characterized by IR, single-crystal X-ray diffraction, and powder X-ray diffraction. Additionally, certain photocatalytic properties of the two complexes for the degradation of organic dye molecules have been observed.
  • 加载中
    1. [1]

      Al-Sahlanee T Q M, Al-Amery M H. Synthesis, Characterization, Antioxident and Anticancer Human Studies of New Metal Ion Complexes of Poly Schiff Base Derived from 4-Aminocetophenone with Salicylaldehyde and 4-Bromoaniline[J]. Asian J. Pharm. Clin. Res., 2018,11:489-493.  

    2. [2]

      Zoubi W A, Al-Hamdani A A S, Kaseem M, Ahmed S D, Ko Y G. A New Azo-Schiff Base: Synthesis, Characterization, Biological Activity and Theoretical Studies of Its Complexes[J]. Appl. Organomet. Chem., 2016,30:810-817. doi: 10.1002/aoc.3506

    3. [3]

      Malik M A, Dar O A, Gull P, Wani M Y. Heterocyclic Schiff Base Transition Metal Complexes in Antimicrobial and Anticancer Chemotherapy[J]. MedChemComm, 2018,9:409-436. doi: 10.1039/C7MD00526A

    4. [4]

      Gayen F R, Ali A A, Bora D, Roy S, Saha S, Saikia L, Goswamee R L, Saha B. Correction: A Ferrocene Functionalized Schiff Base Containing Cu(Ⅱ) Complex: Synthesis, Characterization and Parts-Per-Million Level Catalysis for Azide Alkyne Cycloaddition[J]. Dalton Trans., 2020,49:6578-6586. doi: 10.1039/D0DT00915F

    5. [5]

      Xu Y J, Kaneko K, Kanai M, Shibasaki M, Matsunaga S. Regiodivergent Kinetic Resolution of Terminal and Internal rac-Aziridines with Malonates under Dinuclear Schiff Base Catalysis[J]. J. Am. Chem. Soc., 2014,136(25):9190-9194. doi: 10.1021/ja5039165

    6. [6]

      Liu X, Hamon J R. Recent Developments in Penta-, Hexa- and Hepta-dentate Schiff Base Ligands and Their Metal Complexes[J]. Coord. Chem. Rev., 2019,389(15):94-118.  

    7. [7]

      Cozzi P G. Metal-Salen Schiff Base Complexes in Catalysis: Practical Aspects[J]. Chem. Soc. Rev., 2004,33(7):410-421. doi: 10.1039/B307853C

    8. [8]

      Shellaiah M, Wu Y H, Singh A, Raju M V R, Lin H C. Novel Pyrene- and Anthracene-Based Schiff Base Derivatives as Cu2+ and Fe3+ Fluorescence Turn-On Sensors and for Aggregation Induced Emissions[J]. J. Mater. Chem. A, 2013,1:1310-1318. doi: 10.1039/C2TA00574C

    9. [9]

      Berbasova T, Nosrati M, Vasileiou C, Wang W J, Lee K S S, Yapici I, Geiger J H, Borhan B. Rational Design of a Colorimetric pH Sensor from a Soluble Retinoic Acid Chaperone[J]. J. Am. Chem. Soc., 2013,135(43):16111-16119. doi: 10.1021/ja404900k

    10. [10]

      El-Shishtawy R M, Al-Ghamdi H A, Alam M M, Al-Amshany Z M, Asiri A M, Rahman M M. Development of Cd2+ Sensor Based on BZNA/Nafion/Glassy Carbon Electrode by Electrochemical Approach[J]. Chem. Eng. J., 2018,352(15):225-231.

    11. [11]

      Liu X, Fu C H, Ren X L, Liu H Y, Li L L, Meng X W. Fluorescence Switching Method for Cascade Detection of Salicylaldehyde and Zinc(Ⅱ) Ion Using Protein Protected Gold Nanoclusters[J]. Biosens. Bioelectron., 2015,74(15):322-328.  

    12. [12]

      Das M, Biswas A, Kundu B K, Charmier M A J, Mukherjee A, Mobin S M, Udayabhanu G, Mukhopadhyay S. Enhanced Pseudo-Halide Promoted Corrosion Inhibition by Biologically Active Zinc(Ⅱ) Schiff Base Complexes[J]. Chem. Eng. J., 2019,357(1):447-457.

    13. [13]

      Bedair M A, El-Sabbah M M B, Fouda A S, Elaryian H M. Synthesis, Electrochemical and Quantum Chemical Studies of Some Prepared Surfactants Based on Azodye and Schiff Base as Corrosion Inhibitors for Steel in Acid Medium[J]. Corros. Sci., 2017,128:54-72. doi: 10.1016/j.corsci.2017.09.016

    14. [14]

      Saha S Kr, Banerjee P. Introduction of Newly Synthesized Schiff Base Molecules as Efficient Corrosion Inhibitors for Mild Steel in 1 M HCl Medium: An Experimental, Density Functional Theory and Molecular Dynamics Simulation Study[J]. Mater. Chem. Front., 2018,2:1674-1691. doi: 10.1039/C8QM00162F

    15. [15]

      Sun H, Sun S S, Han F F, Ni Z H, Zhang R, Li M D. A New Tetraphenylethene-Based Schiff Base: Two Crystalline Polymorphs Exhibiting Totally Different Photochromic and Fluorescence Properties[J]. J. Mater. Chem. C, 2019,7:7053-7060.  

    16. [16]

      Guo S L, Liu G, Fan C B, Pu S Z. A New Diarylethene-Derived Probe for Colorimetric Sensing of Cu(Ⅱ) and Fluorometric Sensing of Cu(Ⅱ) and Zn(Ⅱ): Photochromism and High Selectivity[J]. Sens. Actuators B, 2018,266(1):603-613.  

    17. [17]

      Pu S Z, Tong Z P, Liu G, Wang R J. Multi-Addressable Molecular Switches Based on a New Diarylethene Salicylal Schiff Base Derivative[J]. J. Mater. Chem. C, 2013,1:4726-4739. doi: 10.1039/c3tc30804a

    18. [18]

      Mukhopadhyay A, Maka V K, Moorthy J N. Fluoride-Triggered Ring-Opening of Photochromic Diarylpyrans into Merocyanine Dyes: Naked-Eye Sensing in Subppm Levels[J]. J. Org. Chem., 2016,81(17):7741-7750. doi: 10.1021/acs.joc.6b01361

    19. [19]

      Zhang J J, Fu Y X, Han H H, Zang Y, Li J, He X P, Feringa B L, Tian H. Remote Light-Controlled Intracellular Target Recognition by Photochromic Fluorescent Glycoprobes[J]. Nat. Commun., 2017,8987. doi: 10.1038/s41467-017-01137-8

    20. [20]

      Lin S Y, Gutierrez-Cuevas K G, Zhang X F, Guo J B, Li Q. Fluorescent Photochromic Alpha-Cyanodiarylethene Molecular Switches: An Emerging and Promising Class of Functional Diarylethene[J]. Adv. Funct. Mater., 20202007957.

    21. [21]

      Ali A A, Kharbash R, Kim Y. Chemo- and Biosensing Applications of Spiropyran and Its Derivatives: A Review[J]. Anal. Chim. Acta, 2020,1110(8):199-223.  

    22. [22]

      Zacharias P, Gather M C, Kohnen A, Rehmann N, Meerholz K. Photoprogrammable Organic Light-Emitting Diodes[J]. Angew. Chem. Int. Ed., 2009,48:4038-4041. doi: 10.1002/anie.200805969

    23. [23]

      Feuerstein T J, Muller R, Barner-Kowollik C, Roesky P W. Investigating the Photochemistry of Spiropyran Metal Complexes with Online LED-NMR[J]. Inorg. Chem., 2019,58(22):15479-15486. doi: 10.1021/acs.inorgchem.9b02547

    24. [24]

      Wales D J, Cao Q, Kastner K, Karjalainen E, Newton G N, Sans V. 3D-Printable Photochromic Molecular Materials for Reversible Information Storage[J]. Adv. Mater., 2018,30(26)1870193. doi: 10.1002/adma.201870193

    25. [25]

      Tian H. Data Processing on a Unimolecular Platform[J]. Angew. Chem. Int. Ed., 2010,49(28):4710-4712. doi: 10.1002/anie.200906834

    26. [26]

      Raymo F M, Alvarado R J, Giordani S, Cejas M A. Memory Effects Based on Intermolecular Photoinduced Proton Transfer[J]. J. Am. Chem. Soc., 2003,125(8):2361-2364. doi: 10.1021/ja027977j

    27. [27]

      Miguez F B, Menzonatto T G, Netto J F Z, Silva I M S, Verano-Braga T, Lopes J F, DeSousa F B. Photo-Dynamic and Fluorescent Zinc Complex Based on Spiropyran Ligand[J]. J. Mol. Struct., 2020,1211(5)128105.  

    28. [28]

      Funasako Y, Miyazaki H, Sasaki T, Goshima K, Inokuchi M. Synthesis, Photochromic Properties, and Crystal Structures of Salts Containing a Pyridinium-Fused Spiropyran: Positive and Negative Photochromism in the Solution and Solid State[J]. J. Phys. Chem. B, 2020,124(33):7251-7257. doi: 10.1021/acs.jpcb.0c04994

    29. [29]

      Qu L, Xu X M, Song J T, Wu D H, Wang L, Zhou W L, Zhou X G, Xiang H F. Solid-State Photochromic Molecular Switches Based on Axially Chiral and Helical Spiropyrans[J]. Dyes Pigm., 2020,181108597. doi: 10.1016/j.dyepig.2020.108597

    30. [30]

      Cui H Q, Liu H, Chen S, Wang R M. Synthesis of Amphiphilic Spiropyran-Based Random Copolymer by Atom Transfer Radical Polymerization for Co2+ Recognition[J]. Dyes Pigm., 2015,115:50-57. doi: 10.1016/j.dyepig.2014.12.008

    31. [31]

      Hu S Z, Lv L H, Chen S H, You M L, Fu Z Y. Zn-MOF-Based Photoswitchable Dyad that Exhibits Photocontrolled Luminescence[J]. Cryst. Growth Des., 2016,16(12):6705-6708. doi: 10.1021/acs.cgd.6b01129

    32. [32]

      Zhang H, Kou X X, Zhang Q, Qu D H, Tian H. Altering Intercomponent Interactions in a Photochromic Multi-State Rotaxane[J]. Org. Biomol. Chem., 2011,9:4051-4056. doi: 10.1039/c1ob05307h

    33. [33]

      Poelma S O, Oh S S, Helmy S, Knight A S, Burnett G L, Soh H T, Hawker C, Dealaniz J R. Controlled Drug Release to Cancer Cells from Modular One-Photon Visible Light-Responsive Micellar System[J]. Chem. Commun., 2016,52:10525-10528. doi: 10.1039/C6CC04127B

    34. [34]

      Guo X, Shao B H, Zhou S B, Aprahamian I, Chen Z. Visualizing Intracellular Particles and Precise Control of Drug Release Using an Emissive Hydrazone Photochrome[J]. Chem. Sci., 2020,11:3016-3021. doi: 10.1039/C9SC05321B

    35. [35]

      Cardano F, Delcanto E, Giordani S. Spiropyrans for Light-Controlled Drug Delivery[J]. Dalton Trans., 2019,48:15537-15544. doi: 10.1039/C9DT02092F

    36. [36]

      Tong R, Hemmati H D, Langer R, Kohane D S. Photoswitchable Nanoparticles for Triggered Tissue Penetration and Drug Delivery[J]. J. Am. Chem. Soc., 2012,134(21):8848-8855. doi: 10.1021/ja211888a

    37. [37]

      Achilleos D S, Hatton T A, Vamvakaki M. Light-Regulated Supramolecular Engineering of Polymeric Nanocapsules[J]. J. Am. Chem. Soc., 2012,134(13):5726-5729. doi: 10.1021/ja212177q

    38. [38]

      Ye Z W, Yu H B, Yang W, Zheng Y, Li N, Bian H, Wang Z C, Liu Q, Song Y T, Zhang M Y, Xiao Y. Strategy to Lengthen the On-Time of Photochromic Rhodamine Spirolactam for Super-resolution Photoactivated Localization Microscopy[J]. J. Am. Chem. Soc., 2019,141(16):6527-6536. doi: 10.1021/jacs.8b11369

    39. [39]

      Deniz E, Tomasulo M, Cusido J, Yildiz I, Petriella M, Bossi M L, Sortino S, Raymo F M. Photoactivatable Fluorophores for Super-Resolution Imaging Based on Oxazine Auxochromes[J]. J. Phys. Chem. C, 2012,116(10):6058-6068.  

    40. [40]

      Xie J L, Batten S R, Zou Y, Ren X M. Observation of In Situ Ligand Reactions during the Assembly of Crystalline Zn-S Clusters[J]. Cryst. Growth Des., 2011,11:16-20. doi: 10.1021/cg100926g

    41. [41]

      Liu W L, Yu J H, Jiang J H, Yuan L M, Xu B, Liu Q A, Qu B T, Zhang G Q, Yan C G. Hydrothermal Syntheses, Structures and Luminescent Properties of Zn Coordination Polymers Assembled with Benzene-1, 2, 3-tricarboxylic Acid Involving In Situ Ligand Reactions[J]. CrystEngComm, 2011,13:2764-2773.  

    42. [42]

      Hou Y L, PengY L, Diao Y X, Liu J, Chen L Z, Li D. Side Chain Induced Self-Assembly and Selective Catalytic Oxidation Activity of Copper-Copper-N-4 Complexes[J]. Cryst. Growth Des., 2020,20:1237-1241.  

    43. [43]

      Wei R P, Dong Y T, Zhang Y Y, Zhang R, Al-Tahan M A, Zhang J M. In-Situ Self-Assembled Hollow Urchins F-Co-MOF on rGO as Advanced Anodes for Lithium-Ion and Sodium-Ion Batteries[J]. J. Colloid Interface Sci., 2021,582:236-245.  

    44. [44]

      Zhang W Q, Kang Y F, Guo L L, Yang J J. Synthesis, Structure and Fluorescent Property of a Novel 3D Rod-Packing Microporous Zn(Ⅱ) MOF Based on a Temperature-Induced In Situ Ligand Reaction[J]. ChemistrySelect, 2020,5:1439-1442.  

    45. [45]

      Dunning S G, Reynolds J E, Walsh K M, Kristek D J, Lynch V M, Kunal P, Humphrey S M. Direct, One-Pot Syntheses of MOFs Decorated with Low-Valent Metal-Phosphine Complexes[J]. Organometallics, 2019,38:3406-3411.  

    46. [46]

      Baldrighi M, Locatelli G, Desper J, Aakeroy C B, Giordani S. Probing Metal Ion Complexation of Ligands with Multiple Metal Binding Sites: The Case of Spiropyrans[J]. Chem. Eur. J., 2016,22(39):13976-13984.  

  • 加载中
    1. [1]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    4. [4]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    5. [5]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    6. [6]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

    7. [7]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    8. [8]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    9. [9]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    10. [10]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

    11. [11]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    12. [12]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    13. [13]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    14. [14]

      Huijie AnChen YangZhihui JiangJunjie YuanZhongming QiuLonghao ChenXin ChenMutu HuangLinlang HuangHongju LinBiao ChengHongjiang LiuZhiqiang Yu . Luminescence-activated Pt(Ⅳ) prodrug for in situ triggerable cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109134-. doi: 10.1016/j.cclet.2023.109134

    15. [15]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    16. [16]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    17. [17]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    18. [18]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    19. [19]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    20. [20]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

Metrics
  • PDF Downloads(5)
  • Abstract views(470)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return