Citation: Shui-Sheng WU, Bing YI, Ran WANG, Dong-Hui LAN, Nian-Yuan TAN. Enhancing Photocatalytic Performance of Flower-like BiOBr for Degradation of Rhodamine B by ZnO Modification[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 211-219. doi: 10.11862/CJIC.2022.029 shu

Enhancing Photocatalytic Performance of Flower-like BiOBr for Degradation of Rhodamine B by ZnO Modification

  • Corresponding author: Bing YI, bingyi2004@126.com
  • Received Date: 19 March 2021
    Revised Date: 31 August 2021

Figures(9)

  • BiOBr/ZnO three-dimensional flower-like nanocomposite with enhanced photocatalytic ability were prepared by simple solvothermal method applying Bi(NO3)3·5H2O, Zn(CH3COO)2·2H2O and NaBr as precursors. The physical and chemical attributes were characterized by various analytical techniques such as X-ray diffraction, scanning electron microscope, X-ray photon spectroscopy, N2 adsorption-desorption, UV-Vis diffusion reflectance spectroscopy, photoluminescence and electron paramagnetic resonance (EPR). The main crystalline structure of BiOBr is not destroyed after doping, but growth of BiOBr crystals is lightly inhibited by doping ZnO. The trapping agent experiment and EPR spectra show that ·O2- and ·OH are the main active species in the process of photocatalytic degradation. The photocatalytic activities of the composite were evaluated by the degradation of rhodamine B (RhB) under visible light. The results showed that BiOBr/ZnO with 5% ZnO had the best photocatalytic activity, and the degradation rate of RhB reached 98.3% after 50 min of irradiation. Its degradation rate constant was 6.3 times and 3.4 times higher than those of pure ZnO and BiOBr, respectively. The introduction of ZnO enhances the absorption of visible light and the charge separation efficiency of photogenerated carriers.
  • 加载中
    1. [1]

      Lu Y L, Song S, Wang R S, Liu Z Y, Meng J, Sweetman A J, Jenkins A, Ferrier R C, Li H, Luo W. Impacts of Soil and Water Pollution on Food Safety and Health Risks in China[J]. Environ. Int., 2015,77:5-15. doi: 10.1016/j.envint.2014.12.010

    2. [2]

      Smith L E D, Siciliano G. A Comprehensive Review of Constraints to Improved Management of Fertilizers in China and Mitigation of Diffuse Water Pollution from Agriculture[J]. Agr. Ecosyst. Environ., 2015,209:15-25. doi: 10.1016/j.agee.2015.02.016

    3. [3]

      Xue X Y, Cheng R, Shi L, Ma Z, Zhang X. Nanomaterials for Water Pollution Monitoring and Remediation[J]. Environ. Chem. Lett., 2017,15(1):23-27. doi: 10.1007/s10311-016-0595-x

    4. [4]

      MAO J Y, HUANG Y W, HUANG Z Q, LIU X P, XUE H, XIAO L R. Different Photocatalytic Performances for Tetracycline Hydrochloride Degradation of p-Block Metal Oxides Ga2O3 and Sb2O3[J]. Chinese J. Inorg. Chem., 2021,37(3):509-515.  

    5. [5]

      ZHU M F, LU Z Q, LIAO C X, CHEN A P, LI C Z. Application in Formaldehyde Purification in Air of Flower Spherical Bi2S3/BiOI Composite Photocatalyst[J]. Chinese J. Inorg. Chem., 2021,37(3):437-442.  

    6. [6]

      Wang W N, Huang C X, Zhang C Y, Zhao M L, Zhang J, Chen H J, Zha Z B, Zhao T T, Qian H S. Controlled Synthesis of Upconverting Nanoparticles/ZnxCd1-xS Yolk-Shell Nanoparticles for Efficient Photocatalysis Driven by NIR Light[J]. Appl. Catal. B, 2018,224:854-862. doi: 10.1016/j.apcatb.2017.11.037

    7. [7]

      Zhang C Y, Liu H H, Wang W N, Qian H S, Cheng S, Wang Y, Zha Z B, Zhong Y J, Hu Y. Scalable Fabrication of ZnxCd1-xS Double-Shell Hollow Nanospheres for Highly Efficient Hydrogen Production[J]. Appl. Catal. B, 2018,239:309-316. doi: 10.1016/j.apcatb.2018.08.027

    8. [8]

      Zhang C Y, Wang W N, Zhao M L, Zhang J, Zha Z B, Cheng S, Zheng H W, Qian H S. Construction of ZnxCd1-xS/Bi2S3 Composite Nanospheres with Photothermal Effect for Enhanced Photocatalytic Activities[J]. J. Colloid Interface Sci., 2019,546:303-311. doi: 10.1016/j.jcis.2019.03.077

    9. [9]

      WANG Z J, HONG J J, Ng S F, LIU W, HUANG J J, CHEN P F, Ong W J. Recent Progress of Perovskite Oxide in Emerging Photocatalysis Landscape: Water Splitting, CO2 Reduction, and N2 Fixation[J]. Acta Phys.-Chim. Sin., 2021,37(6)2011033.  

    10. [10]

      Cho S, Kim S, Jang J W, Jung S H, Oh E, Lee B R, Lee K H. Large-Scale Fabrication of Sub-20-nm-Diameter ZnO Nanorod Arrays at Room Temperature and Their Photocatalytic Activity[J]. J. Phys. Chem. C, 2009,113(24):10452-10458. doi: 10.1021/jp9017597

    11. [11]

      Kansal S K, Singh M, Sud D. Studies on TiO2/ZnO Photocatalysed Degradation of Lignin[J]. J. Hazard. Mater., 2008,153(1/2):412-417.  

    12. [12]

      Guo X L, Duan J H, Li C J, Zhang Z S, Wang W W. Highly Efficient Z-Scheme g-C3N4/ZnO Photocatalysts Constructed by Co-melting-Recrystallizing Mixed Precursors for Wastewater Treatment[J]. J. Mater. Sci., 2020,55(5):1-14. doi: 10.1007/s10853-019-04097-0

    13. [13]

      Fu D Y, Han G Y, Chang Y Z, Dong J H. The Synthesis and Properties of ZnO-Graphene Nano Hybrid for Photodegradation of Organic Pollutant in Water[J]. Mater. Chem. Phys., 2012,132(2/3):673-681.  

    14. [14]

      Min Y L, Kan Z, Chen Y C, Zhang Y G, Zhao W. Synthesis of Nanostructured ZnO/Bi2WO6 Heterojunction for Photocatalysis Application[J]. Sep. Purif. Technol., 2012,92:115-120. doi: 10.1016/j.seppur.2012.03.012

    15. [15]

      Cheng H F, Huang B B, Dai Y. Engineering BiOX (X=Cl, Br, I) Nanostructures for Highly Efficient Photocatalytic Applications[J]. Nanoscale, 2014,6(4):2009-2026. doi: 10.1039/c3nr05529a

    16. [16]

      Zhang J H, Zhang L L, Lv J S, Zhou S Y, Chen H Q, Zhao Y J, Wang X. Exceptional Visible-Light-Induced Photocatalytic Activity of Attapulgite-BiOBr-TiO2 Nanocomposites[J]. Appl. Clay Sci., 2014,90:135-140. doi: 10.1016/j.clay.2013.12.037

    17. [17]

      LIU X L, SONG J M, DONG N, HU G, YANG J, SI W, LI W H. Synthesis and Adsorption Properties of Squamous BiOBr/Bi2WO6[J]. Acta Phys.-Chim. Sin., 2016,32(7):1844-1850.  

    18. [18]

      Ye L Q, Liu J Y, Jiang Z, Peng T Y, Zan L. Facets Coupling of BiOBr-g-C3N4 Composite Photocatalyst for Enhanced Visible-Light-Driven Photocatalytic Activity[J]. Appl. Catal. B, 2013,142-143:1-7. doi: 10.1016/j.apcatb.2013.04.058

    19. [19]

      Ai Z H, Ho W K, Lee S C. Efficient Visible Light Photocatalytic Removal of NO with BiOBr-Graphene Nanocomposites[J]. J. Phys. Chem. C, 2011,115(51):25330-25337. doi: 10.1021/jp206808g

    20. [20]

      Bezverkhyy I, Skrzypski J, Safonova O, Bellat J P. Sulfidation Mechanism of Pure and Cu-Doped ZnO Nanoparticles at Moderate Temperature: TEM and In Situ XRD Studies[J]. J. Phys. Chem. C, 2012,116(27):14423-14430. doi: 10.1021/jp303181d

    21. [21]

      Ye L Q, Su Y R, Jin X L, Xie H Q, Gao F G, Guo Z. Which Affect the Photoreactivity of BiOBr Single-Crystalline Nanosheets with Different Hydrothermal pH Value: Size or Facet?[J]. Appl. Surf. Sci., 2014,311:858-863. doi: 10.1016/j.apsusc.2014.05.191

    22. [22]

      Cai Z S, Zhong J B, Li J Z, Jin H S. Oxygen Vacancies Enriched BiOBr with Boosted Photocatalytic Behaviors[J]. Inorg. Chem. Commun., 2021,126108450. doi: 10.1016/j.inoche.2021.108450

    23. [23]

      Mahana A, Mehta S K. Potential of Scenedesmus-Fabricated ZnO Nanorods in Photocatalytic Reduction of Methylene Blue under Direct Sunlight: Kinetics and Mechanism[J]. Environ. Sci. Pollut. Res., 2021,28(22):28234-28250. doi: 10.1007/s11356-021-12682-7

    24. [24]

      Wei X X, Cui H T, Guo S Q, Zhao L F, Li W. Hybrid BiOBr-TiO2 Nanocomposites with High Visible Light Photocatalytic Activity for Water Treatment[J]. J. Hazard. Mater., 2013,263(part 2):650-658.  

    25. [25]

      Foghahazade N, Behnejad H, Mousavi M, Hamzehloo M. Novel p-n-p Heterojunction Photocatalyst Synthesized by BiFeO3, ZnO, and BiOBr Nanoparticles: Facile Preparation and High Photocatalytic Activity Under Visible Light[J]. J. Mater. Sci.-Mater. Electron., 2020,31(22):19764-19777. doi: 10.1007/s10854-020-04501-5

    26. [26]

      Yang D R, Feng J, Jiang L L, Wu X L, Sheng L Z, Jiang Y T, Wei T, Fan Z J. Photocatalyst Interface Engineering: Spatially Confined Growth of ZnFe2O4 within Graphene Networks as Excellent Visible-Light-Driven Photocatalysts[J]. Adv. Funct. Mater., 2016,25(45):7080-7087.  

    27. [27]

      Hou Y P, Gan Y Y, Yu Z B, Chen X X, Qian L, Zhang B G, Huang L R, Huang J. Solar Promoted Azo Dye Degradation and Energy Production in the Bio-photoelectrochemical System with a g-C3N4/BiOBr Heterojunction Photocathode[J]. J. Power Sources, 2017,371:26-34. doi: 10.1016/j.jpowsour.2017.10.033

    28. [28]

      Hao L, Jian S, Ai Z H, Zhang , L Z. Efficient Visible Light Nitrogen Fixation with BiOBr Nanosheets of Oxygen Vacancies on the Exposed {001} Facets[J]. J. Am. Chem. Soc., 2015,137(19):6393-6399. doi: 10.1021/jacs.5b03105

    29. [29]

      Liu Z Q, Kuang P Y, Wei R B, Li N, Chen Y B, Su Y Z. BiOBr Nanoplate-Wrapped ZnO Nanorod Arrays for High Performance Photoelectrocatalytic Application[J]. RSC Adv., 2016,6(20):16122-16130. doi: 10.1039/C5RA27310B

    30. [30]

      Liu C, Wu Q S, Ji M W, Zhu H J, Hou H J, Yang Q H, Jiang C F, Wang J J, Tian L, Chen J, Hou W H. Constructing Z-Scheme Charge Separation in 2D Layered Porous BiOBr/Graphitic C3N4 Nanosheets Nanojunction with Enhanced Photocatalytic Activity[J]. J. Alloys Compd., 2017,723:1121-1131. doi: 10.1016/j.jallcom.2017.07.003

    31. [31]

      Wu T L, Liu L, Pi M Y, Zhang D K, Chen S J. Enhanced Magnetic and Photocatalytic Properties of Bi2Fe4O9 Semiconductor with Large Exposed (001) Surface[J]. Appl. Surf. Sci., 2016,377:253-261. doi: 10.1016/j.apsusc.2016.03.140

    32. [32]

      Fu H B, Xu T G, Zhu S B, Zhu Y F. Photocorrosion Inhibition and Enhancement of Photocatalytic Activity for ZnO via Hybridization with C60[J]. Environ. Sci. Technol., 2008,42(21):8064-8069. doi: 10.1021/es801484x

  • 加载中
    1. [1]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    2. [2]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    6. [6]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    7. [7]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    15. [15]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    17. [17]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    19. [19]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    20. [20]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

Metrics
  • PDF Downloads(11)
  • Abstract views(1100)
  • HTML views(351)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return