Citation: Cong QIN, Bing WANG, Ying-De WANG. Applications of Metal-Organic Frameworks and Their Derived Metal Oxides in Resistive Gas Sensors[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(3): 377-398. doi: 10.11862/CJIC.2022.027 shu

Applications of Metal-Organic Frameworks and Their Derived Metal Oxides in Resistive Gas Sensors

Figures(14)

  • Highly sensitive and selective gas sensors are of great significance for real-time monitoring of toxic and harmful gases in the air and early diagnosis of diseases. At present, there are still many problems to be solved urgently for traditional gas-sensing materials. For example, the selectivity is poor and the detection limit, as well as the service life, is insufficient. Metal-organic frameworks (MOFs), as a kind of porous coordination polymers, have been widely used in the field of gas sensors due to their ultra-high specific surface areas and large porosities. MOFs and their derived metal oxides with different nanostructures can improve the sensitivity and selectivity of gas sensors. This provides new ideas and directions for preparing new high-performance gas sensors. Combining the gas sensing mechanism of metal oxide semiconductors (MOS), this article reviews the research progress of MOFs with different nanostructures and their derived metal oxides in the field of resistive gas sensors and prospects their applications and development directions.
  • 加载中
    1. [1]

      Broza Y Y, Mochalski P, Ruzsanyi V, Amann A, Haick H. Hybrid Volatolomics and Disease Detection[J]. Angew. Chem. Int. Ed., 2015,54(38):11036-11048. doi: 10.1002/anie.201500153

    2. [2]

      Vishinkin R, Haick H. Nanoscale Sensor Technologies for Disease Detection via Volatolomics[J]. Small, 2015,11(46):6142-6164. doi: 10.1002/smll.201501904

    3. [3]

      Broza Y Y, Vishinkin R, Barash O, Nakhleh M K, Haick H. Synergy Between Nanomaterials and Volatile Organic Compounds for Noninvasive Medical Evaluation[J]. Chem. Soc. Rev., 2018,47(13):4781-4859. doi: 10.1039/C8CS00317C

    4. [4]

      Wales D J, Grand J, Ting V P, Burke R D, Edler K J, Bowen C R, Mintova S, Burrows A D. Gas Sensing Using Porous Materials for Automotive Applications[J]. Chem. Soc. Rev., 2015,44(13):4290-4321. doi: 10.1039/C5CS00040H

    5. [5]

      Li Z J, Li H, Wu Z L, Wang M K, Luo J T, Torun H, Hu P A, Yang C, Grundmann M, Liu X T, Fu Y Q. Advances in Designs and Mechanisms of Semiconducting Metal Oxide Nanostructures for High-Precision Gas Sensors Operated at Room Temperature[J]. Mater. Horiz., 2019,6(3):470-506. doi: 10.1039/C8MH01365A

    6. [6]

      ZHAI Z Y, ZHANG X L, LI C J. Research Progress on MOFs/Fiber Materials for Resistive Gas Sensors[J]. Chinese Journal of Engineering, 2020,42(9):1096-1105.

    7. [7]

      AKHTAR A, DAI P, CHU X F, LIANG S M, HE L F. Trimethylamine Vapour Sensing Properties of MoO3-GQDs Prepared by Hydrothermal Method[J]. Chinese J. Inorg. Chem., 2021,37(2):351-360.  

    8. [8]

      CHEN S X, JIA L H, GUO X F, ZHAO Z L, YANG R, WANG X. MOFs Self-Sacrifice Template Preparation and NO2 Gas Sensing Performance of ZnO[J]. Chinese J. Inorg. Chem., 2020,36(9):1639-1648.  

    9. [9]

      Lu S H, Zhang Y Z, Liu J Y, Li H Y, Hu Z X, Luo X, Gao N B, Zhang B, Jiang J J, Zhong A H, Luo J T, Liu H. Sensitive H2 Gas Sensors Based on SnO2 Nanowires[J]. Sens. Actuators B, 2021,345130334. doi: 10.1016/j.snb.2021.130334

    10. [10]

      Na H B, Zhang X F, Deng Z P, Xu Y M, Huo L H, Gao S. Large-Scale Synthesis of Hierarchically Porous ZnO Hollow Tubule for Fast Response to ppb-Level H2S Gas[J]. ACS Appl. Mater. Interfaces, 2019,11:11627-11635. doi: 10.1021/acsami.9b00173

    11. [11]

      Kumar R, Liu X H, Zhang J, Kumar M. Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials[J]. Nano-Micro Lett., 2020,12(1)164. doi: 10.1007/s40820-020-00503-4

    12. [12]

      Jang J S, Koo W T, Kim D H, Kim I L. In Situ Coupling of Multidi-mensional MOFs for Heterogeneous Metal-Oxide Architectures: Toward Sensitive Chemiresistors[J]. ACS Cent. Sci., 2018,4(7):929-937. doi: 10.1021/acscentsci.8b00359

    13. [13]

      Li H Y, Zhao S N, Zang S Q, Li J. Functional Metal-Organic Frameworks as Effective Sensors of Gases and Volatile Compounds[J]. Chem. Soc. Rev., 2020,49(17):6364-6401. doi: 10.1039/C9CS00778D

    14. [14]

      Ma Z H, Yuan T W, Fan Y, Wang L Y, Duan Z M, Du W, Zhang D, Xu J Q. A Benzene Vapor Sensor Based on a Metal-Organic Framework-Modified Quartz Crystal Microbalance[J]. Sens. Actuators B, 2020,311127365. doi: 10.1016/j.snb.2019.127365

    15. [15]

      Zhang X, Lan W Y, Xu J L, Luo Y T, Pan J, Liao C Y, Yang L Y, Tan W H, Huang X T. ZIF-8 Derived Hierarchical Hollow ZnO Nanocages with Quantum Dots for Sensitive Ethanol Gas Detection[J]. Sens. Actuators B, 2019,289:144-152.

    16. [16]

      Guo L L, Chen F, Xie N, Wang C, Kou X Y, Sun Y F, Ma J, Liang X S, Gao Y, Lu G Y. Metal-Organic Frameworks Derived Tin-Doped Cobalt Oxide Yolk-Shell Nanostructures and Their Gas Sensing Properties[J]. J. Colloid Interface Sci., 2018,528:53-62. doi: 10.1016/j.jcis.2018.05.089

    17. [17]

      Sun H M, Liu L. Metal-Organic Frameworks-Derived 2D Spindlelike Sn-Doped Co3O4 Porous Nanosheets as Efficient Materials for TEA Detection[J]. Sens. Actuators B, 2021,338129825. doi: 10.1016/j.snb.2021.129825

    18. [18]

      Koo W T, Jang J S, Kim I D. Metal-Organic Frameworks for Chemiresistive Sensors[J]. Chem, 2019,5(8):1938-1963. doi: 10.1016/j.chempr.2019.04.013

    19. [19]

      Wang G, Yang S J, Cao L, Jin P K, Zeng X K, Zhang X W, Wei J. Engineering Mesoporous Semiconducting Metal Oxides from Metal-Organic Frameworks for Gas Sensing[J]. Coord. Chem. Rev., 2021,445214086. doi: 10.1016/j.ccr.2021.214086

    20. [20]

      Fang X, Zong B Y, Mao S. Metal-Organic Framework-Based Sensors for Environmental Contaminant Sensing[J]. Nano-Micro Lett., 2018,10(4)64. doi: 10.1007/s40820-018-0218-0

    21. [21]

      Mahajan S, Jagtap S. Metal-Oxide Semiconductors for Carbon Monoxide (CO) Gas Sensing: A Review[J]. Appl. Mater. Today, 2020,18100483. doi: 10.1016/j.apmt.2019.100483

    22. [22]

      Wang J, Hu C Y, Xia Y, Zhang B. Mesoporous ZnO Nanosheets with Rich Surface Oxygen Vacancies for UV-Activated Methane Gas Sensing at Room Temperature[J]. Sens. Actuators B, 2021,333129547. doi: 10.1016/j.snb.2021.129547

    23. [23]

      Kundu S, Kumar A, Sen S, Nilabh A. Bio-Synthesis of SnO2 and Comparison Its CO Sensing Performance with Conventional Processes[J]. J. Alloys Compd., 2020,818152841. doi: 10.1016/j.jallcom.2019.152841

    24. [24]

      TIAN W D, LI X Z, CAO J L, WANG Y. Synthesis and Triethylamine Sensing Performance of Nanowires Assembled Leaf-like MoO3 Nanostructure[J]. Chinese J. Inorg. Chem., 2020,36(10):1948-1958. doi: 10.11862/CJIC.2020.223 

    25. [25]

      Miao J S, Chen C, Meng L, Lin Y S. Self-Assembled Monolayer of Metal Oxide Nanosheet and Structure and Gas-Sensing Property Relationship[J]. ACS Sens., 2019,4(5):1279-1290. doi: 10.1021/acssensors.9b00162

    26. [26]

      ZHOU T T. Study on Sensing Performance Optimization of Gas Sensors Based on Multiple Metal Oxide Semiconductors. Changchun: Jilin University, 2020: 6-7

    27. [27]

      Tao K, Han X, Yin Q, Wang D, Han L, Chen L. Metal-Organic Frameworks-Derived Porous In2O3 Hollow Nanorod for High-Performance Ethanol Gas Sensor[J]. ChemistrySelect, 2017,2(3):10918-10925.

    28. [28]

      Li Q, Wu J B, Huang L, Gao J F, Zhou H W, Shi Y J, Pan Q H, Zhang G, Du Y, Liang W X. Sulfur Dioxide Gas-Sensitive Materials Based on Zeolitic Imidazolate Framework-Derived Carbon Nanotubes[J]. J. Mater. Chem. A, 2018,6(25):12115-12124. doi: 10.1039/C8TA02036A

    29. [29]

      Zhu L, Wang J N, Liu J W, Nasir M S, Zhu J W, Li S S, Liang J D, Yan W. Smart Formaldehyde Detection Enabled by Metal Organic Framework-Derived Doped Electrospun Hollow Nanofibers[J]. Sens. Actuators B, 2021,326128819. doi: 10.1016/j.snb.2020.128819

    30. [30]

      Karnati P, Akbar S, Morris P A. Conduction Mechanisms in One Dimensional Core-Shell Nanostructures for Gas Sensing: A Review[J]. Sens. Actuators B, 2019,295:127-143. doi: 10.1016/j.snb.2019.05.049

    31. [31]

      Wang B J, Ma S Y, Pei S T, Xu X L, Cao P F, Zhang J L, Zhang R, Xu X H, Han T. High Specific Surface Area SnO2 Prepared by Calcining Sn-MOFs and Their Formaldehyde-Sensing Characteristics[J]. Sens. Actuators B, 2020,321128560. doi: 10.1016/j.snb.2020.128560

    32. [32]

      Ma J W, Fan H Q, Zheng X K, Wang H, Zhao N, Zhang M C, Yadav A K, Wang W J, Dong W Q, Wang S R. Facile Metal-Organic Frameworks-Templated Fabrication of Hollow Indium Oxide Microstructures for Chlorine Detection at Low Temperature[J]. J. Hazard. Mater., 2020,387122017. doi: 10.1016/j.jhazmat.2020.122017

    33. [33]

      Zhang Y L, Jia C W, Wang Q Y, Kong Q, Chen G, Guan H T, Dong C J. Highly Sensitive and Selective Toluene Sensor of Bimetallic Ni/Fe-MOFs Derived Porous NiFe2O4 Nanorods[J]. Ind. Eng. Chem. Res., 2019,58(22):9450-9457. doi: 10.1021/acs.iecr.9b01497

    34. [34]

      Zhou L J, Zhang X X, Zhang W Y. Sulfur Dioxide Sensing Properties of MOF-Derived ZnFe2O4 Functionalized with Reduced Graphene Oxide at Room Temperature[J]. Rare Met., 2021,40(6):1604-1613. doi: 10.1007/s12598-020-01608-w

    35. [35]

      Xu K, Lai C, Yang Y X, Zhou H, Zhou C W, Yang Y, Yu T, Yuan C L. Pore Engineering of Co3O4 Nanowire Arrays by MOF-Assisted Construction for Enhanced Acetone Sensing Performances[J]. Sens. Actuators B, 2021,329129095. doi: 10.1016/j.snb.2020.129095

    36. [36]

      Li S H, Xie L L, He M, Hu X B, Luo G F, Chen C, Zhu Z G. Metal-Organic Frameworks-Derived Bamboo-like CuO/In2O3 Heterostructure for High-Performance H2S Gas Sensor with Low Operating Tem-perature[J]. Sens. Actuators B, 2020,310127828. doi: 10.1016/j.snb.2020.127828

    37. [37]

      Shi S X, Zhang F, Lin H M, Wang Q, Shi E B, Qu F Y. Enhanced Triethylamine-Sensing Properties of p-n Heterojunction Co3O4/In2O3 Hollow Microtubes Derived from Metal-Organic Frameworks[J]. Sens. Actuators B, 2018,262:739-749. doi: 10.1016/j.snb.2018.01.246

    38. [38]

      Zhou T T, Zhang R, Wang Y B, Zhang T. MOF-Derived 1D α-Fe2O3/NiFe2O4 Heterojunction as Efficient Sensing Materials of Acetone Vapors[J]. Sens. Actuators B, 2019,281:885-892. doi: 10.1016/j.snb.2018.10.124

    39. [39]

      Zhang Y L, Jia C W, Kong Q, Fan N Y, Chen G, Guan H T, Dong C J. ZnO-Decorated In/Ga Oxide Nanotubes Derived from Bimetallic In/Ga MOFs for Fast Acetone Detection with High Sensitivity and Selectivity[J]. ACS Appl. Mater. Interfaces, 2020,12(23):26161-26169. doi: 10.1021/acsami.0c04580

    40. [40]

      Zhao Y M, Wang S, Zhai X, Shao L, Bai X J, Liu Y L, Wang T Q, Li Y N, Zhang L Y, Fan F Q, Meng F B, Zhang X M, Fu Y. Construction of Zn/Ni Bimetallic Organic Framework Derived ZnO/NiO Heterostructure with Superior N-Propanol Sensing Performance[J]. ACS Appl. Mater. Interfaces, 2021,13(7):9206-9215. doi: 10.1021/acsami.0c21583

    41. [41]

      Feng D W, Lei T, Lukatskaya M R, Park J, Huang Z H, Lee M, Shaw L, Chen S C, Yakovenko A A, Kulkarni A, Xiao J P, Fredrickson K, Tok J B, Zou X D, Cui Y, Bao Z N. Robust and Conductive Two-Dimensional Metalorganic Frameworks with Exceptionally High Volumetric and Areal Capacitance[J]. Nat. Energy, 2018,3(1):30-36. doi: 10.1038/s41560-017-0044-5

    42. [42]

      Campbell M G, Liu S F, Swager T M, Dinca M. Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks[J]. J. Am. Chem. Soc., 2015,137(43):13780-13783. doi: 10.1021/jacs.5b09600

    43. [43]

      Yao M S, Xiu J W, Huang Q Q, Li W H, Wu W W, Wu A Q, Cao L A, Deng W H, Wang G E, Xu G. Van der Waals Heterostructured MOF-on-MOF Thin Films: Cascading Functionality to Realize Advanced Chemiresistive Sensing[J]. Angew. Chem. Int. Ed., 2019,58(42):14915-14919. doi: 10.1002/anie.201907772

    44. [44]

      Yao M S, Lv X J, Fu Z H, Li W H, Deng W H, Wu G D, Xu G. Layer-by-Layer Assembled Conductive Metal-Organic Framework Nanofilms for Room-Temperature Chemiresistive Sensing[J]. Angew. Chem. Int. Ed., 2017,56(52):16510-16514. doi: 10.1002/anie.201709558

    45. [45]

      Koo W T, Kim S J, Jang J S, Kim D H, Kim I D. Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials[J]. Adv. Sci., 2019,6(1)1900250.

    46. [46]

      Meng Z, Aykanat A, Mirica K A. Welding Metallophthalocyanines into Bimetallic Molecular Meshes for Ultrasensitive, Low-Power Chemiresistive Detection of Gases[J]. J. Am. Chem. Soc., 2019,141(5):2046-2053. doi: 10.1021/jacs.8b11257

    47. [47]

      Wang M C, Zhang Z, Zhong H X, Huang X, Li W, Hambsch M, Zhang P P, Wang Z Y, Petkov P S, Heine T, Mannsfeld S C B, Feng X L, Dong R H. Surface-Modified Phthalocyanine-Based Two-Dimensional Conjugated Metal-Organic Framework Films for Polarity-Selective Chemiresistive Sensing[J]. Angew. Chem. Int. Ed., 2021,60:2-9. doi: 10.1002/anie.202014556

    48. [48]

      Yuan H Y, Aljneibi S A A A, Yuan J R, Wang Y X, Liu H, Fang J, Tang C H, Yan X H, Cai H, Gu Y D, Pennycook S J, Tao J F, Zhao D. ZnO Nanosheets Abundant in Oxygen Vacancies Derived from Metal-Organic Frameworks for ppb-Level Gas Sensing[J]. Adv. Mater., 2019,31(11)1807161. doi: 10.1002/adma.201807161

    49. [49]

      Choi P G, Fuchigami T, Kakimoto K, Masuda Y. Effect of Crystal Defect on Gas Sensing Properties of Co3O4 Nanoparticles[J]. ACS Sens., 2020,5(6):1665-1673. doi: 10.1021/acssensors.0c00290

    50. [50]

      Cao J, Wang S M, Li J Y, Xing Y N, Zhao X Y, Li D J. Porous Nanosheets Assembled Co3O4 Hierarchical Architectures for Enhanced BTX (Benzene, Toluene and Xylene) Gas Detection[J]. Sens. Actuators B, 2020,315128120. doi: 10.1016/j.snb.2020.128120

    51. [51]

      Chen X W, Wang S, Su C, Han Y T, Zou C, Zeng M, Hu N T, Su Y J, Zhou Z H, Yang Z. Two-Dimensional Cd-Doped Porous Co3O4 Nanosheets for Enhanced Room-Temperature NO2 Sensing Performance[J]. Sens. Actuators B, 2020,305127393. doi: 10.1016/j.snb.2019.127393

    52. [52]

      Busacca C, Donato A, Faro M L, Malara A, Neri G, Trocino S. CO Gas Sensing Performance of Electrospun Co3O4 Nanostructures at Low Operating Temperature[J]. Sens. Actuators B, 2020,303127193. doi: 10.1016/j.snb.2019.127193

    53. [53]

      Qin C, Wang B, Wu N, Han C, Wang Y D. General Strategy to Fabricate Porous Co-Based Bimetallic Metal Oxide Nanosheets for High-Performance CO Sensing[J]. ACS Appl. Mater. Interfaces, 2021,13(22):26318-26329. doi: 10.1021/acsami.1c03508

    54. [54]

      Lü Y Y, Zhan W W, He Y, Wang Y T, Kong X J, Kuang Q, Xie Z X, Zheng L S. MOF-Templated Synthesis of Porous Co3O4 Concave Nanocubes with High Specific Surface Area and Their Gas Sensing Properties[J]. ACS Appl. Mater. Interfaces, 2014,6(6):4186-4195. doi: 10.1021/am405858v

    55. [55]

      Chen E X, Yang H, Zhang J. Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor[J]. Inorg. Chem., 2014,53(11):5411-5413. doi: 10.1021/ic500474j

    56. [56]

      Chen E X, Fu H R, Lin R, Tan Y X, Zhang J. Highly Selective and Sensitive Trimethylamine Gas Sensor Based on Cobalt Imidazolate Framework Material[J]. ACS Appl. Mater. Interfaces, 2014,6(24):22871-22875. doi: 10.1021/am5071317

    57. [57]

      Zhan M M, Hussain S, AlGarni T S, Shah S, Liu J L, Zhang X Z, Ahmad A, Javed M S, Qiao G J, Liu G W. Facet Controlled Polyhedral ZIF-8 MOF Nanostructures for Excellent NO2 Gas-Sensing Applications[J]. Mater. Res. Bull., 2021,136111133. doi: 10.1016/j.materresbull.2020.111133

    58. [58]

      Ullah M, Bai X, Chen J K, Lv H, Liu Z, Zhang Y, Wang J, Sun B H, Li L, Shi K Y. Metal-Organic Framework Material Derived Co3O4 Coupled with Graphitic Carbon Nitride as Highly Sensitive NO2 Gas Sensor at Toom Temperature[J]. Colloids Surf. A, 2021,612125972. doi: 10.1016/j.colsurfa.2020.125972

    59. [59]

      Yan W J, Xu H S, Ling M, Zhou S Y, Qiu T, Deng Y J, Zhao Z D, Zhang E P. MOF-Derived Porous Hollow Co3O4@ZnO Cages for High-Performance MEMS Trimethylamine Sensors[J]. ACS Sens., 2021,6(7):2613-2621. doi: 10.1021/acssensors.1c00315

    60. [60]

      Zhang X, Xu Y H, Liu H, Zhao W R, Ming A J, Wei F. Preparation of Porous Co3O4 and Its Response to Ethanol with Low Energy Consumption[J]. RSC Adv., 2020,10(4):2191-2197. doi: 10.1039/C9RA08904G

    61. [61]

      Qin C, Wang B, Wu N, Han C, Wu C Z, Zhang X S, Tian Q, Shen S J, Li P P, Wang Y D. Metal-Organic Frameworks Derived Porous Co3O4 Dodecahedeons with Abundant Active Co3+ for ppb-Level CO Gas Sensing[J]. Appl. Surf. Sci., 2020,506144900. doi: 10.1016/j.apsusc.2019.144900

    62. [62]

      Cheng L L, He Y C, Gong M Z, He X H, Ning Z K, Yu H C, Jiao Z. MOF-Derived Synthesis of Co3O4 Nanospheres with Rich Oxygen Vacancies for Long-Term Stable and Highly Selective n-Butanol Sensing Performance[J]. J. Alloys Compd., 2021,857158205. doi: 10.1016/j.jallcom.2020.158205

    63. [63]

      Sun J H, Sun L X, Bai S L, Fu H, Guo J, Feng Y J, Luo R X, Li D Q, Chen A F. Pyrolyzing Co/Zn Bimetallic Organic Framework to Form p-n Heterojunction of Co3O4/ZnO for Detection of Formaldehyde[J]. Sens. Actuators B, 2019,285:291-301. doi: 10.1016/j.snb.2018.12.080

    64. [64]

      Zhang D Z, Yang Z M, Wu Z L, Dong G K. Metal-Organic Frameworks-Derived Hollow Zinc Oxide/Cobalt Oxide Nanoheterostructure for Highly Sensitive Acetone Sensing[J]. Sens. Actuators B, 2019,283:42-51. doi: 10.1016/j.snb.2018.11.133

    65. [65]

      Qu F D, Zhang N, Liu D L, Zhang S D, Talluri B, Zheng Y, Thomas T, Zhao R Y, Ruan S P, Yang M H. Engineering Co3+ Cations in Co3O4 Multishelled Microspheres by Mn Doping: The Roles of Co3+ and Oxygen Species for Sensitive Xylene Detection[J]. Sens. Actuators B, 2020,308127651. doi: 10.1016/j.snb.2019.127651

    66. [66]

      Gao C B, Lyu F L, Yin Y D. Encapsulated Metal Nanoparticles for Catalysis[J]. Chem. Rev., 2021,121(2):834-881. doi: 10.1021/acs.chemrev.0c00237

    67. [67]

      Liu H L, Chang L, Chen L Y, Li Y W. In Situ One-Step Synthesis of Metal-Organic Framework Encapsulated Naked Pt Nanoparticles Without Additional Reductants[J]. J. Mater. Chem. A, 2015,3(15):8028-8033. doi: 10.1039/C5TA00030K

    68. [68]

      Guo L L, Chen F, Xie N, Kou X Y, Wang C, Sun Y F, Liu F M, Liang X S, Gao Y, Yan X, Zhang T, Lu G Y. Ultra-Sensitive Sensing Platform Based on Pt-ZnO-In2O3 Nanofibers for Detection of Ace-tone[J]. Sens. Actuators B, 2018,272:185-194. doi: 10.1016/j.snb.2018.05.161

    69. [69]

      Qin C, Wang B, Li P P, Sun L, Han C, Wu N, Wang Y D. Metal-Organic Framework-Derived Highly Dispersed Pt Nanoparticles-Functionalized ZnO Polyhedrons for ppb-Level CO Detection[J]. Sens. Actuators B, 2021,331129433. doi: 10.1016/j.snb.2021.129433

    70. [70]

      Chen L Y, Luque R, Li Y W. Controllable Design of Tunable Nanostructures Inside Metal-Organic Frameworks[J]. Chem. Soc. Rev., 2017,46(15):4614-4630. doi: 10.1039/C6CS00537C

    71. [71]

      Zhang J N, Lu H, Zhang L Z, Leng D Y, Zhang Y Y, Wang W, Gao Y, Lu H B, Gao J Z, Zhu G Q, Yang Z B, Wang C L. Metal-Organic Framework-Derived ZnO Hollow Nanocages Functionalized with Nanoscale Ag Catalysts for Enhanced Ethanol Sensing Properties[J]. Sens. Actuators B, 2019,291:458-469. doi: 10.1016/j.snb.2019.04.058

    72. [72]

      Mo R X, Han D Q, Yang C W, Tang J Y, Wang F, Li C L. MOF-Derived Porous Fe2O3 Nanocubes Combined with Reduced Graphene Oxide for n-Butanol Room Temperature Gas Sensing[J]. Sens. Actuators B, 2021,330129326. doi: 10.1016/j.snb.2020.129326

    73. [73]

      Lin G, Wang H, Lai X Y, Yang R S, Zou Y Z, Wan J W, Liu D, Jiang H, Hu Y. Co3O4/N-Doped RGO Nanocomposites Derived from MOFs and Their Highly Enhanced Gas Sensing Performance[J]. Sens. Actuators B, 2020,303127219. doi: 10.1016/j.snb.2019.127219

    74. [74]

      Zhang D Z, Wu D, Zong X Q, Yang Z M. Enhanced SO2 Gas Sensing Properties of Metal Organic Frameworks-Derived Titanium Dioxide/Reduced Graphene Oxide Nanostructure[J]. J. Mater. Sci.-Mater. Electron., 2019,30(12):11070-11078. doi: 10.1007/s10854-019-01449-z

    75. [75]

      Wang D Y, Chi M H, Zhang D Z, Wu D. Ammonia Sensing Properties of Metal-Organic Frameworks-Derived Zinc Oxide/Reduced Graphene Oxide Nanocomposite[J]. J. Mater. Sci.-Mater. Electron., 2020,31(6):4463-4472. doi: 10.1007/s10854-019-02778-9

    76. [76]

      Qu F D, Zhang S D, Huang C Z, Guo X Y, Zhu Y, Thomas T, Guo H C, Attfield J P, Yang M H. Surface Functionalized Sensors for Humidity-Independent Gas Detection[J]. Angew. Chem. Int. Ed., 2021,60(12):2-8.

    77. [77]

      Dhakshinamoorthy A, Asiri A M, Garcia H. Tuneable Nature of Metal Organic Frameworks as Heterogeneous Solid Catalysts for Alcohol Oxidation[J]. Chem. Commun., 2017,53(79):10851-10869. doi: 10.1039/C7CC05927B

    78. [78]

      Zhou Y, Zhou T T, Zhang Y P, Tang L, Guo Q, Wang M F, Xie C S, Zeng D W. Synthesis of Core-Shell Flower-like WO3@ZIF-71 with Enhanced Response and Selectivity to H2S Gas[J]. Solid State Ionics, 2020,350115278. doi: 10.1016/j.ssi.2020.115278

    79. [79]

      Liu Y S, Wang R, Zhang T, Liu S, Fei T. Zeolitic Imidazolate Framework-8(ZIF-8)-Coated In2O3 Nanofibers as an Efficient Sens-ing Material for ppb-Level NO2 Detection[J]. J. Colloid Interface Sci., 2019,541:249-257. doi: 10.1016/j.jcis.2019.01.052

    80. [80]

      Lv R N, Zhang Q Y, Wang W, Lin Y J, Zhang S P. ZnO@ZIF-8 Core-Shell Structure Gas Sensors with Excellent Selectivity to H2[J]. Sensors, 2021,21(12)4069. doi: 10.3390/s21124069

    81. [81]

      Hwang K, Ahn J, Cho I, Kang K, Kim K, Choi J, Polychronopoulou K, Park I. Microporous Elastomer Filter Coated with Metal Organic Frameworks for Improved Selectivity and Stability of Metal Oxide Gas Sensors[J]. ACS Appl. Mater. Interfaces, 2020,12(11):13338-13347. doi: 10.1021/acsami.0c00143

    82. [82]

      Yao M S, Li W H, Xu G. Metal-Organic Frameworks and Their Derivatives for Electrically-Transduced Gas Sensors[J]. Coord. Chem. Rev., 2021,426213479. doi: 10.1016/j.ccr.2020.213479

  • 加载中
    1. [1]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    7. [7]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    8. [8]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    9. [9]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    10. [10]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    16. [16]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    17. [17]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    18. [18]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    19. [19]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    20. [20]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

Metrics
  • PDF Downloads(70)
  • Abstract views(2275)
  • HTML views(921)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return