Citation: Jian-Hao LI, Han SONG, Zheng-Yan ZHANG, Zhen-Xiao PAN, Xin-Hua ZHONG. Preparation of High-Efficiency Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells by ZnS/SiO2 Synergistic Photoanode Coating[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 84-92. doi: 10.11862/CJIC.2022.025 shu

Preparation of High-Efficiency Zn-Cu-In-Se Quantum Dot-Sensitized Solar Cells by ZnS/SiO2 Synergistic Photoanode Coating

Figures(8)

  • The synergistic photoanode coating strategy was applied to inhibit the charge recombination processes at the photoanode/electrolyte interface and improve the photovoltaic performance of Zn-Cu-In-Se (ZCISe) quantum dotsensitized solar cells (QDSC). On the surface of ZCISe QD-sensitized photoanode, ZnS and SiO2 layers were successively coated by the solution route to form double passivation coating layers. This double-layer treatment offers more effective charge recombination inhibition than the traditional ZnS single coating layer, thus obtaining higher photovoltaic performance for the resulting QDSC. The results indicated that with the coating of ZnS/SiO2 double passivation layers, the efficiency was increased from 12.17% corresponding to cells with the traditional single ZnS coating to 13.23%. This is mainly due to the effective inhibition of the charge recombination processes at the photoanode/electrolyte interface, and the charge collection efficiency is improved accordingly.
  • 加载中
    1. [1]

      Huang F, Zhang Q F, Xu B K, Hou J, Wang Y, Massé R C, Peng S L, Liu J S, Cao G Z. A Comparison of ZnS and ZnSe Passivation Layers on CdS/CdSe Co-sensitized Quantum Dot Solar Cells[J]. J. Mater. Chem. A, 2016,4(38):14773-14780. doi: 10.1039/C6TA01590E

    2. [2]

      Zhang Z L, Chen Z H, Yuan L, Chen W J, Yang J F, Wang B, Wen X M, Zhang J B, Hu L, Stride J A, Conibeer G J, Patterson R J, Huang S. A New Passivation Route Leading to over 8% Efficient PbSe QuantumDot Solar Cells via Direct Ion Exchange with Perovskite Nanocrystals[J]. Adv. Mater., 2017,29(41)1703214. doi: 10.1002/adma.201703214

    3. [3]

      Liu J, Liu J Q, Wang C L, Ge Z W, Wang D L, Xia L X, Guo L, Du N, Hao X T, Xiao H D. A Novel ZnS/SiO2 Double Passivation Layers for the CdS/CdSe Quantum Dots Co-sensitized Solar Cells Based on Zinc Titanium Mixed Metal Oxides[J]. Sol. Energy Mater. Sol. Cells, 2020,208110380. doi: 10.1016/j.solmat.2019.110380

    4. [4]

      Zhang H, Fang W J, Wang W R, Qian N S, Ji X H. Highly Efficient Zn -Cu-In-Se Quantum Dot-Sensitized Solar Cells through Surface Capping with Ascorbic Acid[J]. Mater. Interfaces, 2019,11(7):6927-6936. doi: 10.1021/acsami.8b18033

    5. [5]

      Regulacio M D, Han M Y. Multinary Ⅰ-Ⅲ-Ⅵ2 and Ⅰ2-Ⅱ-Ⅳ-Ⅵ4 Semiconductor Nanostructures for Photocatalytic Applications[J]. Acc. Chem. Res, 2016,49(3):511-519. doi: 10.1021/acs.accounts.5b00535

    6. [6]

      Du J, Singh R, Fedin I, Fuhr A S, Klimov V I. Spectroscopic Insights into High Defect Tolerance of Zn: CuInSe2 Quantum - Dot - Sensitized Solar Cells[J]. Nat. Energy, 2020,5(5):409-417. doi: 10.1038/s41560-020-0617-6

    7. [7]

      Song H, Lin Y, Zhang Z Y, Rao H S, Wang W R, Fang Y P, Pan Z X, Zhong X H. Improving the Efficiency of Quantum Dot Sensitized Solar Cells beyond 15% via Secondary Deposition[J]. J. Am. Chem. Soc, 2021,143(12):4790-4800. doi: 10.1021/jacs.1c01214

    8. [8]

      Wang G S, Wei H Y, Shi J J, Xu Y Z, Wu H J, Luo Y H, Li D M, Meng Q B. Significantly Enhanced Energy Conversion Efficiency of CuInS2 Quantum Dot Sensitized Solar Cells by Controlling Surface Defects[J]. Nano Energy, 2017,35:17-25. doi: 10.1016/j.nanoen.2017.03.008

    9. [9]

      Zhang L L, Pan Z X, Wang W, Du J, Ren Z W, Shen Q, Zhong X H. Copper Deficient Zn-Cu-In-Se Quantum Dot Sensitized Solar Cells for High Efficiency[J]. J. Mater. Chem. A, 2017,5(40):21442-21451. doi: 10.1039/C7TA06904A

    10. [10]

      Zhao K, Pan Z X, Zhong X H. Charge Recombination Control for High Efficiency Quantum Dot Sensitized Solar Cells[J]. J. Phys. Chem. Lett., 2016,7(3):406-417. doi: 10.1021/acs.jpclett.5b02153

    11. [11]

      Mora - Seró I. Current Challenges in the Development of Quantum Dot Sensitized Solar Cells[J]. Adv. Energy Mater., 2020,10(33)2001774. doi: 10.1002/aenm.202001774

    12. [12]

      Tétreault N, Horváth E, Moehl T, Brillet J, Smajda R, Bungener S, Cai N, Wang P, Zakeeruddin S M, Forró L, Magrez A, Grätzel M. High-Efficiency Solid-State Dye-Sensitized Solar Cells: Fast Charge Extraction through Self-Assembled 3D Fibrous Network of Crystalline TiO2 Nanowires[J]. ACS Nano, 2010,4(12):7644-7650. doi: 10.1021/nn1024434

    13. [13]

      Mora - Seró I, Giménez S, Fabregat - Santiago F, Gómez R, Shen Q, Toyoda T, Bisquert J. Recombination in Quantum Dot Sensitized Solar Cells[J]. Acc. Chem. Res., 2009,42(11):1848-1857. doi: 10.1021/ar900134d

    14. [14]

      Shalom M, Dor S, Rühle S, Grinis L, Zaban A. Core/CdS Quantum Dot/Shell Mesoporous Solar Cells with Improved Stability and Efficiency Using an Amorphous TiO2 Coating[J]. J. Phys. Chem. C, 2009,113(9):3895-3898. doi: 10.1021/jp8108682

    15. [15]

      Roelofs K E, Brennan T P, Dominguez J C, Bailie C D, Margulis G Y, Hoke E T, Mcgehee M D, Bent S F. Effect of Al2O3 Recombination Barrier Layers Deposited by Atomic Layer Deposition in SolidState CdS Quantum Dot - Sensitized Solar Cells[J]. J. Phys. Chem. C, 2013,117(11):5584-5592. doi: 10.1021/jp311846r

    16. [16]

      Prasittichai C, Avila J R, Farha O K, Hupp J T. Systematic Modulation of Quantum (Electron) Tunneling Behavior by Atomic Layer Deposition on Nanoparticulate SnO2 and TiO2 Photoanodes[J]. J. Am. Chem. Soc., 2013,135(44):16328-16331. doi: 10.1021/ja4089555

    17. [17]

      Tachan Z, Hod I, Shalom M, Grinis L, Zaban A. The Importance of the TiO2/Quantum Dots Interface in the Recombination Processes of Quantum Dot Sensitized Solar Cells[J]. Phys. Chem. Chem. Phys., 2013,15(11):3841-3845. doi: 10.1039/c3cp44719g

    18. [18]

      Zhao K, Pan Z X, Mora-Seró I, Cánovas E, Wang H, Song Y, Gong X Q, Wang J, Bonn M, Bisquert J, Zhong X H. Boosting Power Conversion Efficiencies of Quantum-Dot-Sensitized Solar Cells beyond 8% by Recombination Control[J]. J. Am. Chem. Soc., 2015,137(16)56025609.  

    19. [19]

      Zhang L L, Rao H S, Pan Z X, Zhong X H. ZnSxSe1-x Alloy Passivation Layer for High-Efficiency Quantum-Dot-Sensitized Solar Cells[J]. ACS Appl. Mater. Interfaces, 2019,11(44):41415-41423. doi: 10.1021/acsami.9b14579

    20. [20]

      Du J, Du Z L, Hu J S, Pan Z X, Shen Q, Sun J K, Long D H, Dong H, Sun L, Zhong X H, Wan L J. Zn-Cu-In-Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%[J]. J. Am. Chem. Soc., 2016,138(12):4201-4209. doi: 10.1021/jacs.6b00615

    21. [21]

      Song H, Lin Y, Zhou M S, Rao H S, Pan Z X, Zhong X H. Zn-Cu-In-S-Se Quinary"Green"Alloyed Quantum-Dot-Sensitized Solar Cells with a Certified Efficiency of 14.4%[J]. Angew. Chem. Int. Ed., 2021,60(11):6137-6144. doi: 10.1002/anie.202014723

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    7. [7]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    17. [17]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    18. [18]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    19. [19]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    20. [20]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

Metrics
  • PDF Downloads(2)
  • Abstract views(771)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return