Citation: Jing YU, Ting ZHANG, Qi LIU, Jing-Yuan LIU, Jun WANG. Preparation of Nitrogen-Doped Carbon Fiber Supported Nickel-Cobalt Selenides for Electrocatalytic Hydrogen Evolution Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 63-72. doi: 10.11862/CJIC.2022.021 shu

Preparation of Nitrogen-Doped Carbon Fiber Supported Nickel-Cobalt Selenides for Electrocatalytic Hydrogen Evolution Performance

  • Corresponding author: Jing YU, jing.yu@hrbeu.edu.cn
  • Received Date: 5 July 2021
    Revised Date: 16 November 2021

Figures(10)

  • Nitrogen-doped carbon fiber (NCF) loaded bimetal selenide nanoparticle material ((Ni, Co)Se2/NCF) was synthesized by calcination and selenium treatment using electrospun fibers as the precursor. A series of related characterization was carried out, and the hydrogen evolution properties of the materials were studied under acidic and alkaline conditions. (Ni, Co)Se2 nanoparticles were anchored in NCF, which effectively prevents the aggregation of nanoparticles and provides more catalytic active sites. The electrocatalytic hydrogen evolution test results showed that in 1 mol·L-1 KOH solution, the overpotential of (Ni, Co)Se2/NCF was 123.3 mV at the current density of 10 mA·cm-2, and the Tafel slope was 144.0 mV·dec-1. In 0.5 mol·L-1 H2SO4 solution, the overpotential of hydrogen evolution required for (Ni, Co)Se2/NCF to reach the current density of 10 mA·cm-2 was 95.5 mV, and the Tafel slope was 115.2 mV·dec-1, indicating excellent electrocatalytic hydrogen evolution performance.
  • 加载中
    1. [1]

      Liu X J, He J, Zhao S Z, Liu Y P, Zhao Z, Luo J, Hu G Z, Sun X M, Ding Y. Self-Powered H2 Production with Bifunctional Hydrazine as Sole Consumable[J]. Nat. Commun., 2018,9(1)4365. doi: 10.1038/s41467-018-06815-9

    2. [2]

      Peng X Y, Bao H H, Sun J Q, Mao Z Y, Qiu Y, Mo Z J, Zhuo L C, Zhang S H, Luo J, Liu X J. Heteroatom Coordination Induces Electric Field Polarization of Single Pt Sites to Promote Hydrogen Evolution Activity[J]. Nanoscale, 2021,13(15):7134-7139. doi: 10.1039/D1NR00795E

    3. [3]

      Peng X Y, Hou J T, Mi Y Y, Sun J Q, Qi G C, Qin Y J, Zhang S S, Qiu Y, Luo J, Liu X J. Bifunctional Single-Atomic Mn Sites for EnergyEfficient Hydrogen Production[J]. Nanoscale, 2021,13(9):4767-4773. doi: 10.1039/D0NR09104A

    4. [4]

      Laskowski F A L, Nellist M R, Qiu J J, Boettcher S W. Metal Oxide/(Oxy)Hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water - Splitting Photoanodes[J]. J. Am. Chem. Soc., 2019,141(4):1394-1405. doi: 10.1021/jacs.8b09449

    5. [5]

      Liu X J, Xi W, Li C, Li X B, Shi J, Shen Y L, He J, Zhang L H, Xie L, Sun X M, Wang P, Luo J, Liu Li M, Ding Y. Nanoporous Zn-Doped Co3O4 Sheets with Single - Unit - Cell - Wide Lateral Surfaces for Efficient Oxygen Evolution and Water Splitting[J]. Nano Energy, 2018,44:371-377. doi: 10.1016/j.nanoen.2017.12.016

    6. [6]

      Jiang H S, Zhang K N, Li W Y, Cui Z, He S A, Zhao S Y, Li J, He G J, Shearing P R, Brett D J L. MoS2/NiS Core-Shell Structures for Improved Electrocatalytic Process of Hydrogen Evolution[J]. J. Power Sources, 2020,472228497. doi: 10.1016/j.jpowsour.2020.228497

    7. [7]

      Zhang C X, Liu H X, Liu Y F, Liu X J, Mi Y Y, Guo R J, Sun J Q, Bao H H, He J, Qiu Y, Ren J Q, Yang X J, Luo J, Hu G Z. Rh2S3/N-Doped Carbon Hybrids as pH-Universal Bifunctional Electrocatalysts for Energy-Saving Hydrogen Evolution[J]. Small Methods, 2020,4(9)2000208. doi: 10.1002/smtd.202000208

    8. [8]

      Li K D, Zhang J F, Wu R, Yu Y F, Zhang B. Anchoring CoO Domains on CoSe2 Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media[J]. Adv. Sci., 2016,3(6)1500426. doi: 10.1002/advs.201500426

    9. [9]

      Jiang H S, Zhao S Y, Li W Y, Neville T P, Akpinar I, Shearing P R, Brett D J L, He G J. Realizing Optimal Hydrogen Evolution Reaction Properties via Tuning Phosphorous and Transition Metal Interactions[J]. Green Energy Environ., 2020,5(4):506-512. doi: 10.1016/j.gee.2020.07.009

    10. [10]

      Zhao D P, Dai M Z, Liu H Q, Chen K F, Zhu X F, Xue D F, Wu X, Liu J P. Sulfur-Induced Interface Engineering of Hybrid NiCo2O4 @NiMo2S4 Structure for Overall Water Splitting and Flexible Hybrid Energy Storage[J]. Adv. Mater. Interfaces, 2019,6(21)1901308. doi: 10.1002/admi.201901308

    11. [11]

      Lan D, Qin M, Liu J L, Wu G L, Zhang Y, Wu H J. Novel Binary Cobalt Nickel Oxide Hollowed-Out Spheres for Electromagnetic Absorption Applications[J]. Chem. Eng. J., 2020,382122797. doi: 10.1016/j.cej.2019.122797

    12. [12]

      Jayabalan T, Manickam M, Naina M S. NiCo2O4-Graphene Nanocomposites in Sugar Industry Wastewater Fed Microbial Electrolysis Cell for Enhanced Biohydrogen Production[J]. Renewable Energy, 2020,154:1144-1152. doi: 10.1016/j.renene.2020.03.071

    13. [13]

      Zhao X, Mao L, Cheng Q H, Li J, Liao F F, Yang G Y, Xie L, Zhao C L, Chen L Y. Two-Dimensional Spinel Structured Co-Based Materials for High Performance Supercapacitors: A Critical Review[J]. Chem. Eng. J., 2020,387124081. doi: 10.1016/j.cej.2020.124081

    14. [14]

      Niu S, Jiang W J, Wei Z X, Tang T, Ma J M, Hu J S, Wan L J. SeDoping Activates FeOOH for Cost - Effective and Efficient Electrochemical Water Oxidation[J]. J. Am. Chem. Soc., 2019,141(17)70057013.

    15. [15]

      Xu Q C, Jiang H, Duan X Z, Jiang Z, Hu Y J, Boettcher S W, Zhang W Y, Guo S J, Li C Z. Fluorination-Enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation[J]. Nano Lett., 2021,21(1):492-499. doi: 10.1021/acs.nanolett.0c03950

    16. [16]

      Xu Z F, Pan H L, Lin Y, Yang Z, Wang J L, Gong Y Q. Constructing a Hexagonal Copper - Coin - Shaped NiCoSe2@NiO@CoNi2S4@CoS2 Hybrid Nanoarray on Nickel Foam as a Robust Oxygen Evolution Reaction Electrocatalyst[J]. J. Mater. Chem. A, 2018,6(38):18641-18648. doi: 10.1039/C8TA06084C

    17. [17]

      Li T F, Li S L, Liu Q Y, Yin J W, Sun D M, Zhang M Y, Xu L, Tang Y W, Zhang Y W. Immobilization of Ni3Co Nanoparticles into N-Doped Carbon Nanotube/Nanofiber Integrated Hierarchically Branched Architectures toward Efficient Overall Water Splitting[J]. Adv. Sci., 2020,7(1)1902371. doi: 10.1002/advs.201902371

    18. [18]

      Xu Q C, Liu Y, Jiang H, Hu Y J, Liu H H, Li C Z. Unsaturated Sulfur Edge Engineering of Strongly Coupled MoS2 Nanosheet - Carbon Macroporous Hybrid Catalyst for Enhanced Hydrogen Generation[J]. Adv. Energy Mater., 2019,9(2)1802553. doi: 10.1002/aenm.201802553

    19. [19]

      Chen T Y, Vedhanarayanan B, Lin S Y, Shao Li D, Sofer Z, Lin J Y, Lin T W. Electrodeposited NiSe on a Forest of Carbon Nanotubes as a Free - Standing Electrode for Hybrid Supercapacitors and Overall Water Splitting[J]. J. Colloid Interface Sci., 2020,574:300-311. doi: 10.1016/j.jcis.2020.04.034

    20. [20]

      Xia C, Liang H F, Zhu J J, Schwingenschlögl U, Alshareef H N. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution[J]. Adv. Energy Mater., 2017,7(9)1602089. doi: 10.1002/aenm.201602089

    21. [21]

      Yang Y Q, Zhang W B, Xiao Y L, Shi Z P, Cao X M, Tang Y, Gao Q D. CoNiSe2 Heteronanorods Decorated with Layered-Double-Hydroxides for Efficient Hydrogen Evolution[J]. Appl. Catal. B, 2019,242:132-139. doi: 10.1016/j.apcatb.2018.09.082

    22. [22]

      Xu X, Liang H F, Ming F W, Qi Z B, Xie Y Q, Wang Z C. Prussian Blue Analogues Derived Penroseite (Ni, Co)Se2 Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting[J]. ACS Catal., 2017,7(9):6394-6399. doi: 10.1021/acscatal.7b02079

    23. [23]

      Yu J, Li Q Q, Xu C Y, Chen N, Li Y, Liu H G, Zhen L, Dravid V P, Wu J S. NiSe2 Pyramids Deposited on N-Doped Graphene Encapsulated Ni Foam for High - Performance Water Oxidation[J]. J. Mater. Chem. A, 2017,5(8):3981-3986. doi: 10.1039/C6TA10303K

    24. [24]

      Fang Z W, Peng L L, Qian Y M, Zhang X, Xie Y J, Cha J J, Yu G H. Dual Tuning of Ni-Co-A (A=P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution[J]. J. Am. Chem. Soc., 2018,140(15):5241-5247. doi: 10.1021/jacs.8b01548

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    5. [5]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    9. [9]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    15. [15]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    16. [16]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    17. [17]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    18. [18]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    19. [19]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    20. [20]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

Metrics
  • PDF Downloads(11)
  • Abstract views(1271)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return