Citation: Jing YU, Ting ZHANG, Qi LIU, Jing-Yuan LIU, Jun WANG. Preparation of Nitrogen-Doped Carbon Fiber Supported Nickel-Cobalt Selenides for Electrocatalytic Hydrogen Evolution Performance[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 63-72. doi: 10.11862/CJIC.2022.021 shu

Preparation of Nitrogen-Doped Carbon Fiber Supported Nickel-Cobalt Selenides for Electrocatalytic Hydrogen Evolution Performance

  • Corresponding author: Jing YU, jing.yu@hrbeu.edu.cn
  • Received Date: 5 July 2021
    Revised Date: 16 November 2021

Figures(10)

  • Nitrogen-doped carbon fiber (NCF) loaded bimetal selenide nanoparticle material ((Ni, Co)Se2/NCF) was synthesized by calcination and selenium treatment using electrospun fibers as the precursor. A series of related characterization was carried out, and the hydrogen evolution properties of the materials were studied under acidic and alkaline conditions. (Ni, Co)Se2 nanoparticles were anchored in NCF, which effectively prevents the aggregation of nanoparticles and provides more catalytic active sites. The electrocatalytic hydrogen evolution test results showed that in 1 mol·L-1 KOH solution, the overpotential of (Ni, Co)Se2/NCF was 123.3 mV at the current density of 10 mA·cm-2, and the Tafel slope was 144.0 mV·dec-1. In 0.5 mol·L-1 H2SO4 solution, the overpotential of hydrogen evolution required for (Ni, Co)Se2/NCF to reach the current density of 10 mA·cm-2 was 95.5 mV, and the Tafel slope was 115.2 mV·dec-1, indicating excellent electrocatalytic hydrogen evolution performance.
  • 加载中
    1. [1]

      Liu X J, He J, Zhao S Z, Liu Y P, Zhao Z, Luo J, Hu G Z, Sun X M, Ding Y. Self-Powered H2 Production with Bifunctional Hydrazine as Sole Consumable[J]. Nat. Commun., 2018,9(1)4365. doi: 10.1038/s41467-018-06815-9

    2. [2]

      Peng X Y, Bao H H, Sun J Q, Mao Z Y, Qiu Y, Mo Z J, Zhuo L C, Zhang S H, Luo J, Liu X J. Heteroatom Coordination Induces Electric Field Polarization of Single Pt Sites to Promote Hydrogen Evolution Activity[J]. Nanoscale, 2021,13(15):7134-7139. doi: 10.1039/D1NR00795E

    3. [3]

      Peng X Y, Hou J T, Mi Y Y, Sun J Q, Qi G C, Qin Y J, Zhang S S, Qiu Y, Luo J, Liu X J. Bifunctional Single-Atomic Mn Sites for EnergyEfficient Hydrogen Production[J]. Nanoscale, 2021,13(9):4767-4773. doi: 10.1039/D0NR09104A

    4. [4]

      Laskowski F A L, Nellist M R, Qiu J J, Boettcher S W. Metal Oxide/(Oxy)Hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water - Splitting Photoanodes[J]. J. Am. Chem. Soc., 2019,141(4):1394-1405. doi: 10.1021/jacs.8b09449

    5. [5]

      Liu X J, Xi W, Li C, Li X B, Shi J, Shen Y L, He J, Zhang L H, Xie L, Sun X M, Wang P, Luo J, Liu Li M, Ding Y. Nanoporous Zn-Doped Co3O4 Sheets with Single - Unit - Cell - Wide Lateral Surfaces for Efficient Oxygen Evolution and Water Splitting[J]. Nano Energy, 2018,44:371-377. doi: 10.1016/j.nanoen.2017.12.016

    6. [6]

      Jiang H S, Zhang K N, Li W Y, Cui Z, He S A, Zhao S Y, Li J, He G J, Shearing P R, Brett D J L. MoS2/NiS Core-Shell Structures for Improved Electrocatalytic Process of Hydrogen Evolution[J]. J. Power Sources, 2020,472228497. doi: 10.1016/j.jpowsour.2020.228497

    7. [7]

      Zhang C X, Liu H X, Liu Y F, Liu X J, Mi Y Y, Guo R J, Sun J Q, Bao H H, He J, Qiu Y, Ren J Q, Yang X J, Luo J, Hu G Z. Rh2S3/N-Doped Carbon Hybrids as pH-Universal Bifunctional Electrocatalysts for Energy-Saving Hydrogen Evolution[J]. Small Methods, 2020,4(9)2000208. doi: 10.1002/smtd.202000208

    8. [8]

      Li K D, Zhang J F, Wu R, Yu Y F, Zhang B. Anchoring CoO Domains on CoSe2 Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media[J]. Adv. Sci., 2016,3(6)1500426. doi: 10.1002/advs.201500426

    9. [9]

      Jiang H S, Zhao S Y, Li W Y, Neville T P, Akpinar I, Shearing P R, Brett D J L, He G J. Realizing Optimal Hydrogen Evolution Reaction Properties via Tuning Phosphorous and Transition Metal Interactions[J]. Green Energy Environ., 2020,5(4):506-512. doi: 10.1016/j.gee.2020.07.009

    10. [10]

      Zhao D P, Dai M Z, Liu H Q, Chen K F, Zhu X F, Xue D F, Wu X, Liu J P. Sulfur-Induced Interface Engineering of Hybrid NiCo2O4 @NiMo2S4 Structure for Overall Water Splitting and Flexible Hybrid Energy Storage[J]. Adv. Mater. Interfaces, 2019,6(21)1901308. doi: 10.1002/admi.201901308

    11. [11]

      Lan D, Qin M, Liu J L, Wu G L, Zhang Y, Wu H J. Novel Binary Cobalt Nickel Oxide Hollowed-Out Spheres for Electromagnetic Absorption Applications[J]. Chem. Eng. J., 2020,382122797. doi: 10.1016/j.cej.2019.122797

    12. [12]

      Jayabalan T, Manickam M, Naina M S. NiCo2O4-Graphene Nanocomposites in Sugar Industry Wastewater Fed Microbial Electrolysis Cell for Enhanced Biohydrogen Production[J]. Renewable Energy, 2020,154:1144-1152. doi: 10.1016/j.renene.2020.03.071

    13. [13]

      Zhao X, Mao L, Cheng Q H, Li J, Liao F F, Yang G Y, Xie L, Zhao C L, Chen L Y. Two-Dimensional Spinel Structured Co-Based Materials for High Performance Supercapacitors: A Critical Review[J]. Chem. Eng. J., 2020,387124081. doi: 10.1016/j.cej.2020.124081

    14. [14]

      Niu S, Jiang W J, Wei Z X, Tang T, Ma J M, Hu J S, Wan L J. SeDoping Activates FeOOH for Cost - Effective and Efficient Electrochemical Water Oxidation[J]. J. Am. Chem. Soc., 2019,141(17)70057013.

    15. [15]

      Xu Q C, Jiang H, Duan X Z, Jiang Z, Hu Y J, Boettcher S W, Zhang W Y, Guo S J, Li C Z. Fluorination-Enabled Reconstruction of NiFe Electrocatalysts for Efficient Water Oxidation[J]. Nano Lett., 2021,21(1):492-499. doi: 10.1021/acs.nanolett.0c03950

    16. [16]

      Xu Z F, Pan H L, Lin Y, Yang Z, Wang J L, Gong Y Q. Constructing a Hexagonal Copper - Coin - Shaped NiCoSe2@NiO@CoNi2S4@CoS2 Hybrid Nanoarray on Nickel Foam as a Robust Oxygen Evolution Reaction Electrocatalyst[J]. J. Mater. Chem. A, 2018,6(38):18641-18648. doi: 10.1039/C8TA06084C

    17. [17]

      Li T F, Li S L, Liu Q Y, Yin J W, Sun D M, Zhang M Y, Xu L, Tang Y W, Zhang Y W. Immobilization of Ni3Co Nanoparticles into N-Doped Carbon Nanotube/Nanofiber Integrated Hierarchically Branched Architectures toward Efficient Overall Water Splitting[J]. Adv. Sci., 2020,7(1)1902371. doi: 10.1002/advs.201902371

    18. [18]

      Xu Q C, Liu Y, Jiang H, Hu Y J, Liu H H, Li C Z. Unsaturated Sulfur Edge Engineering of Strongly Coupled MoS2 Nanosheet - Carbon Macroporous Hybrid Catalyst for Enhanced Hydrogen Generation[J]. Adv. Energy Mater., 2019,9(2)1802553. doi: 10.1002/aenm.201802553

    19. [19]

      Chen T Y, Vedhanarayanan B, Lin S Y, Shao Li D, Sofer Z, Lin J Y, Lin T W. Electrodeposited NiSe on a Forest of Carbon Nanotubes as a Free - Standing Electrode for Hybrid Supercapacitors and Overall Water Splitting[J]. J. Colloid Interface Sci., 2020,574:300-311. doi: 10.1016/j.jcis.2020.04.034

    20. [20]

      Xia C, Liang H F, Zhu J J, Schwingenschlögl U, Alshareef H N. Active Edge Sites Engineering in Nickel Cobalt Selenide Solid Solutions for Highly Efficient Hydrogen Evolution[J]. Adv. Energy Mater., 2017,7(9)1602089. doi: 10.1002/aenm.201602089

    21. [21]

      Yang Y Q, Zhang W B, Xiao Y L, Shi Z P, Cao X M, Tang Y, Gao Q D. CoNiSe2 Heteronanorods Decorated with Layered-Double-Hydroxides for Efficient Hydrogen Evolution[J]. Appl. Catal. B, 2019,242:132-139. doi: 10.1016/j.apcatb.2018.09.082

    22. [22]

      Xu X, Liang H F, Ming F W, Qi Z B, Xie Y Q, Wang Z C. Prussian Blue Analogues Derived Penroseite (Ni, Co)Se2 Nanocages Anchored on 3D Graphene Aerogel for Efficient Water Splitting[J]. ACS Catal., 2017,7(9):6394-6399. doi: 10.1021/acscatal.7b02079

    23. [23]

      Yu J, Li Q Q, Xu C Y, Chen N, Li Y, Liu H G, Zhen L, Dravid V P, Wu J S. NiSe2 Pyramids Deposited on N-Doped Graphene Encapsulated Ni Foam for High - Performance Water Oxidation[J]. J. Mater. Chem. A, 2017,5(8):3981-3986. doi: 10.1039/C6TA10303K

    24. [24]

      Fang Z W, Peng L L, Qian Y M, Zhang X, Xie Y J, Cha J J, Yu G H. Dual Tuning of Ni-Co-A (A=P, Se, O) Nanosheets by Anion Substitution and Holey Engineering for Efficient Hydrogen Evolution[J]. J. Am. Chem. Soc., 2018,140(15):5241-5247. doi: 10.1021/jacs.8b01548

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    5. [5]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    6. [6]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    7. [7]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    10. [10]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    11. [11]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    12. [12]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    15. [15]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    19. [19]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    20. [20]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

Metrics
  • PDF Downloads(15)
  • Abstract views(1816)
  • HTML views(332)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return