Citation: Lan YANG, Xin XIA, Dong-Huang WANG, Ai-Jun ZHOU. Co-precipitation Reaction Control of FeFe-Based Prussian Blue Cathode Material for Sodium-Ion Batteries[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 111-118. doi: 10.11862/CJIC.2022.020 shu

Co-precipitation Reaction Control of FeFe-Based Prussian Blue Cathode Material for Sodium-Ion Batteries

Figures(5)

  • FeFe-based Prussian blue (NaFeHCF) is a promising cathode material for sodium-ion batteries (SIBs). However, how to effectively control the synthesis parameters to improve the cycling stability of NaFeHCF in sodiumion batteries remains to be addressed. In this work, NaFeHCF powders were prepared through the co-precipitation method, and the synergetic effects of a complexing agent (with or without sodium citrate) and reaction temperature (0-80 ℃) on the physical and electrochemical properties of NaFeHCF were investigated in detail. The results showed that NaFeHCF powders synthesized with the addition of a complexing agent and at a temperature slightly above room temperature (40 ℃) exhibited the most appropriate properties in terms of morphology, grain size, and crystallinity. Therefore, the SIB cathode using this material showed the highest cycling stability, being able to deliver a discharge capacity of 83.5 mAh·g-1 after 1 500 cycles at the current density of 120 mA·g-1 with capacity retention of 79.4%.
  • 加载中
    1. [1]

      Cai P, Zou K Y, Deng X L, Wang B W, Zheng M, Li L H, Hou H S, Zou G Q, Ji X B. Comprehensive Understanding of Sodium-Ion Capacitors: Definition, Mechanisms, Configurations, Materials, Key Technologies, and Future Developments[J]. Adv. Energy Mater., 2021,11(16)2003804. doi: 10.1002/aenm.202003804

    2. [2]

      Nayak P K, Yang L T, Brehm W, Adelhelm P. From Lithium-Ion to Sodium-Ion Batteries: Advantages, Challenges, and Surprises[J]. Angew. Chem. Int. Ed., 2018,57(1):102-120. doi: 10.1002/anie.201703772

    3. [3]

      Wang T Y, Su D W, Shanmukaraj D, Rojo T, Armand M, Wang G X. Electrode Materials for Sodium-Ion Batteries: Considerations on Crystal Structures and Sodium Storage Mechanisms[J]. Electrochem. Energy Rev., 2018,1(2):200-237. doi: 10.1007/s41918-018-0009-9

    4. [4]

      Xiao J, Li X, Tang K K, Wang D D, Long M Q, Gao H, Chen W H, Liu C T, Liu H, Wang G X. Recent Progress of Emerging Cathode Materials for Sodium Ion Batteries[J]. Mater. Chem. Front., 2021,5(10):3735-3764. doi: 10.1039/D1QM00179E

    5. [5]

      Li S F, Gu Z Y, Guo J Z, Hou X K, Yang X, Zhao B, Wu X L. Enhanced Electrode Kinetics and Electrochemical Properties of Low-Cost NaFe2PO4(SO4)2 via Ca2+ Doping as Cathode Material for Sodium-Ion Batteries[J]. J. Mater. Sci. Technol., 2021,78:176-182. doi: 10.1016/j.jmst.2020.10.047

    6. [6]

      Gu Z Y, Guo J Z, Zhao X X, Wang X T, Xie D, Sun Z H, Zhao C D, Liang H J, Li W H, Wu X L. High-Ionicity Fluorophosphate Lattice via Aliovalent Substitution as Advanced Cathode Materials in Sodium- Ion Batteries[J]. InfoMat, 2021,3(6):694-704. doi: 10.1002/inf2.12184

    7. [7]

      Wu H Y, Zou X, Wu X L. Nanoconstruction and Nanoeffect of Phos- phate-Based Cathode Materials for Advanced Sodium-Ion Batteries[J]. Nano Futures, 2020,4(4)042001. doi: 10.1088/2399-1984/abc103

    8. [8]

      ZHANG H X, LI S F, ZHAO B, HOU X K, WU X L. Research Pro- gresses on Iron-Based Cathode Materials for Sodium-Ion Bat[J]. Chinese J. Inorg. Chem., 2020,36(7):1205-1222.  

    9. [9]

      Zhou A J, Cheng W J, Wang W, Zhao Q, Xie J, Zhang W X, Gao H C, Xue L G, Li J Z. Hexacyanoferrate-Type Prussian Blue Analogs: Principles and Advances Toward High-Performance Sodium and Potassium Ion Batteries[J]. Adv. Energy Mater., 2021,11(2)2000943. doi: 10.1002/aenm.202000943

    10. [10]

      Qian J F, Wu C, Cao Y L, Ma Z F, Huang Y H, Ai X P, Yang H X. Prussian Blue Cathode Materials for Sodium-Ion Batteries and Other Ion Batteries[J]. Adv. Energy Mater., 2018,8(17)1702619. doi: 10.1002/aenm.201702619

    11. [11]

      Ma F, Li Q, Wang T Y, Zhang H G, Wu G. Energy storage Materials Derived from Prussian Blue Analogues[J]. Sci. Bull., 2017,62(2095/ 9273)358.  

    12. [12]

      Chen J S, Wei L, Mahmood A, Pei Z X, Zhou Z, Chen X C, Chen Y. Prussian Blue, Its Analogues and Their Derived Materials for Elec-trochemical Energy Storage and Conversion[J]. Energy Storage Mater., 2020,25:585-612. doi: 10.1016/j.ensm.2019.09.024

    13. [13]

      Wu X Y, Luo Y, Sun M Y, Qian J F, Cao Y L, Ai X P, Yang H X. Low-Defect Prussian Blue Nanocubes as High Capacity and Long Life Cathodes for Aqueous Na-Ion Batteries[J]. Nano Energy, 2015,13:117-123. doi: 10.1016/j.nanoen.2015.02.006

    14. [14]

      Liu Y, Qiao Y, Zhang W X, Li Z, Ji X, Miao L, Yuan L X, Hu X L, Huang Y H. Sodium Storage in Na-Rich NaxFeFe(CN)(6) Nanocubes[J]. Nano Energy, 2015,12:386-393. doi: 10.1016/j.nanoen.2015.01.012

    15. [15]

      You Y, Wu X L, Yin Y X, Guo Y G. High-Quality Prussian Blue Crystals as Superior Cathode Materials for Room-Temperature Sodium-Ion Batteries[J]. Energy Environ. Sci., 2014,7(5):1643-1647. doi: 10.1039/C3EE44004D

    16. [16]

      You Y, Yu X Q, Yin Y X, Nam K W, Guo Y G. Sodium Iron Hexacyanoferrate with High Na Content as a Na -Rich Cathode Material for Na-Ion Batteries[J]. Nano Res., 2015,8(1):117-128. doi: 10.1007/s12274-014-0588-7

    17. [17]

      Yang Y, Liu E S, Yan X M, Ma C R, Wen W, Liao X Z, Ma Z F. Influence of Structural Imperfection on Electrochemical Behavior of Prussian Blue Cathode Materials for Sodium Ion Batteries[J]. J. Electrochem. Soc., 2016,163(9):A2117-A2123. doi: 10.1149/2.0031610jes

    18. [18]

      Yan X M, Yang Y, Liu E S, Sun L Q, Wang H, Liao X Z, He Y S, Ma Z F. Improved Cycling Performance of Prussian Blue Cathode for Sodium Ion Batteries by Controlling Operation Voltage Range[J]. Electrochim. Acta, 2017,225:235-242. doi: 10.1016/j.electacta.2016.12.121

    19. [19]

      Chen R J, Huang Y X, Xie M, Zhang Q Y, Zhang X X, Li L, Wu F. Preparation of Prussian Blue Submicron Particles with a Pore Structure by Two-Step Optimization for Na-Ion Battery Cathodes[J]. ACS Appl. Mater. Interfaces, 2016,8(25):16078-16086. doi: 10.1021/acsami.6b04151

    20. [20]

      Huang Y X, Xie M, Zhang J T, Wang Z H, Jiang Y, Xiao G H, Li S J, Li L, Wu F, Chen R J. A Novel Border-Rich Prussian Blue Synthe- tized by Inhibitor Control as Cathode For Sodium Ion Batteries[J]. Nano Energy, 2017,39:273-283. doi: 10.1016/j.nanoen.2017.07.005

    21. [21]

      Kim D S, Yoo H D, Park M S, Kim H S. Boosting the Sodium Storage Capability of Prussian Blue Nanocubes by Overlaying PEDOT: PSS Layer[J]. J. Alloys Compd., 2019,791:385-390. doi: 10.1016/j.jallcom.2019.03.317

    22. [22]

      Wang W L, Gang Y, Hu Z, Yan Z C, Li W J, Li Y C, Gu Q F, Wang Z X, Chou S L, Liu H K, Dou S X. Reversible Structural Evolution of Sodium-Rich Rhombohedral Prussian Blue for Sodium-Ion Batteries[J]. Nat. Commun., 2020,11(1)980. doi: 10.1038/s41467-020-14444-4

    23. [23]

      Li W J, Chou S L, Wang J Z, Kang Y M, Wang J L, Liu Y, Gu Q F, Liu H K, Dou S X. Facile Method to Synthesize Na-Enriched Na1+xFeFe(CN)6 Frameworks as Cathode with Superior Electrochemical Performance for Sodium-Ion Batteries[J]. Chem. Mater., 2015,27(6):1997-2003. doi: 10.1021/cm504091z

    24. [24]

      Shen Z L, Guo S H, Liu C L, Sun Y P, Chen Z, Tu J, Liu S Y, Cheng J P, Xie J, Cao G S, Zhao X B. Na-Rich Prussian White Cathodes for Long-Life Sodium-Ion Batteries[J]. ACS Sustainable Chem. Eng., 2018,6(12):16121-16129. doi: 10.1021/acssuschemeng.8b02758

    25. [25]

      Yu S H, Shokouhimehr M, Hyeon T, Sung Y E. Iron Hexacyanoferrate Nanoparticles as Cathode Materials for Lithium and Sodium Rechargeable Batteries[J]. ECS Electrochem. Lett., 2013,2(4):A39-A41. doi: 10.1149/2.008304eel

    26. [26]

      Wang L, Song J, Qiao R M, Wray L A, Hossain M A, Chuang Y D, Yang W L, Lu Y H, Evans D, Lee J J, Vail S, Zhao X, Nishijima M, Kakimoto S, Goodenough J B. Rhombohedral Prussian White as Cathode for Rechargeable Sodium-Ion Batteries[J]. J. Am. Chem. Soc., 2015,137(7):2548-2554. doi: 10.1021/ja510347s

    27. [27]

      Li C, Zhang C, Xie J, Wang K B, Li J Z, Zhang Q C. Ferrocene-Based Metal-Organic Framework as a Promising Cathode in Lithium-Ion Battery[J]. Chem. Eng. J., 2021,404126463. doi: 10.1016/j.cej.2020.126463

    28. [28]

      Shen L, Wang Z X, Chen L Q. Prussian Blues as a Cathode Material for Lithium Ion Batteries[J]. Chem. Eur. J., 2014,20(39):12559-12562. doi: 10.1002/chem.201403061

    29. [29]

      Chen R J, Huang Y X, Xie M, Wang Z H, Ye Y S, Li L, Wu F. Chemical Inhibition Method to Synthesize Highly Crystalline Prussian Blue Analogs for Sodium-Ion Battery Cathodes[J]. ACS Appl. Mater. Interfaces, 2016,8(46):31669-31676. doi: 10.1021/acsami.6b10884

    30. [30]

      Ling C, Chen J J, Mizuno F. First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius[J]. J. Phys. Chem. C, 2013,117(41):21158-21165. doi: 10.1021/jp4078689

    31. [31]

      Yan C X, Zhao A L, Zhong F P, Feng X M, Chen W H, Qian J F, Ai X P, Yang H X, Cao Y L. A Low-Defect and Na-Enriched Prussian Blue Lattice with Ultralong Cycle Life for Sodium-Ion Battery Cathode[J]. Electrochim. Acta, 2020,332135533. doi: 10.1016/j.electacta.2019.135533

    32. [32]

      ZHUANG Q C, XU S D, QIU X Y, CUI Y L, FANG L, SUN S G. Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries[J]. Progress in Chemistry, 2010,22(6):1044-1057.  

  • 加载中
    1. [1]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    6. [6]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Siwei Lv Tantian Tan Xinyue Li Siyan Zhang Mingyuan Zhang Minghao Li Hangshuo Guo Zhaorong Li Liangjie Dong Fengshuo Zhang Junlong Zhao . Competition of the “King of Transboundary Medicine”. University Chemistry, 2024, 39(9): 102-108. doi: 10.12461/PKU.DXHX202403034

    9. [9]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    10. [10]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    13. [13]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    14. [14]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    15. [15]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    16. [16]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    17. [17]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    18. [18]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    19. [19]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(55)
  • Abstract views(2426)
  • HTML views(816)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return