Theoretical Study on Regulation of Photoelectric Properties of Zinc Porphyrin Dyes with Heterocyclopentadiene as π-Bridge
- Corresponding author: Yan-Min YU, ymyu@bjut.edu.cn
Citation:
Qian-Qian GAO, Qing-Tang YUAN, Xu-Feng SONG, Yan-Min YU, Jing GUO. Theoretical Study on Regulation of Photoelectric Properties of Zinc Porphyrin Dyes with Heterocyclopentadiene as π-Bridge[J]. Chinese Journal of Inorganic Chemistry,
;2022, 38(2): 295-303.
doi:
10.11862/CJIC.2022.018
Jiao S Z, Wen J Y, Zhou Y, Sun Z C, Liu Y Y, Liu R P. Preparation and Property Studies of Polyaniline Film for Flexible Counter Electrode of Dye-Sensitized Solar Cells by Cyclic Voltammetry[J]. ChemistrySelect, 2021,6(2):230-233. doi: 10.1002/slct.202004412
Jiao S Z, Sun Z C, Wen J Y, Liu Y Y, Li F R, Miao Q Q, Wu W X, Li L H, Zhou Y. Development of Rapid Curing SiO2 Aerogel Composite-Based Quasi Solid-State Dye-Sensitized Solar Cells through Screen-Printing Technology[J]. ACS Appl. Mater. Interfaces, 2020,12(43):48794-48803. doi: 10.1021/acsami.0c14551
Grätzel M, O'regan B. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature, 1991,353(24):737-740.
Zeng K W, Tong Z F, Ma L, Zhu W H, Wu W J, Xie Y S. Molecular Engineering Strategies for Fabricating Efficient Porphyrin-Based Dye-Sensitized Solar Cells[J]. Energy Environ. Sci., 2020,13:1617-1657. doi: 10.1039/C9EE04200H
Urbani M, Grätzel M, Nazeeruddin M K, Torres T. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells[J]. Chem. Rev., 2014,114:12330-12396. doi: 10.1021/cr5001964
Li L L, Diau E W G. Porphyrin-Sensitized Solar Cells[J]. Chem. Soc. Rev., 2013,42:291-304. doi: 10.1039/C2CS35257E
Grätzel M, Kay A. Artificial Photosynthesis 1. Photosensitization of TiO2 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins[J]. J. Phys. Chem., 1993,97:6272-6277. doi: 10.1021/j100125a029
Zhou H R, Ji J M, Kang S H, Kim M S, Lee H S, Kim C H, Kim H K. Molecular Design and Synthesis of D-π-A Structured Porphyrin Dyes with Various Acceptor Units for Dye-Sensitized Solar Cells[J]. J. Mater. Chem. C, 2019,7:2843-2852. doi: 10.1039/C8TC05283B
Higashino T, Kurumisawa Y, Cai N, Fujimori Y, Tsuji Y, Nimura S, Packwood D M, Park J, Imahori H. A Hydroxamic Acid Anchoring Group for Durable Dye-Sensitized Solar Cells Incorporating a Cobalt Redox Shuttle[J]. ChemSusChem, 2017,10:3347-3351. doi: 10.1002/cssc.201701157
Li C M, Luo L, Wu D, Jiang R Y, Lan J B, Wang R L, Huang L Y, Yang S Y, You J S. Porphyrins with Intense Absorptivity: Highly Efficient Sensitizers with a Photovoltaic Efficiency of Up to 10.7% without a Cosensitizer and a Coabsorbate[J]. J. Mater. Chem. A, 2016,4:11829-11834. doi: 10.1039/C6TA02888H
Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-Sensitized Solar Cells with Cobalt(Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency[J]. Science, 2011,334(6056):629-634. doi: 10.1126/science.1209688
Luo J, Zhang J, Huang K W, Qi Q B, Dong S Q, Zhang J, Wang P, Wu J S. N-Annulated Perylene Substituted Zinc-Porphyrins with Different Linking Modes and Electron Acceptors for Dye Sensitized Solar Cells[J]. J. Mater. Chem. A, 2016,4:8428-8434. doi: 10.1039/C6TA02509A
Sheng Y, Li M J, Flores-Leonar M M, Lu W C, Yang J, Hu Y N. Rational Design of SM315-Based Porphyrin Sensitizers for Highly Efficient Dye-Sensitized Solar Cells: A Theoretical Study[J]. J. Mol. Struct., 2020,1205:127567-127576. doi: 10.1016/j.molstruc.2019.127567
Yuan Q T, Yu Y M, Sun Z C, Song X F. Enhancing the Photoelectric Properties of Zinc Porphyrin Dyes by Introducing Five-Membered Heterocyclic Rings into the Electron Donor: A Density Functional Theory and Time-Dependent Density Functional Theory Study[J]. ACS Omega, 2021,6(36):23551-23557. doi: 10.1021/acsomega.1c03635
Kang S H, Jung S Y, Kim Y W, Eom Y K, Kim H K. Exploratory Synthesis and Photovoltaic Performance Comparison of D-π-A Structured Zn-Porphyrins for Dye-Sensitized Solar Cells[J]. Dyes Pigm., 2018,149:341-347. doi: 10.1016/j.dyepig.2017.10.011
Zhang J, Chen C J, Zhu H C. Porphyrin Dyes Bearing Heterocyclic Anchoring Groups for Dye-Sensitized Solar Cells with Enhanced Efficiency and Long-Term Stability: Further Optimization of Champion Porphyrin Dye SM315[J]. Appl. Surf. Sci., 2020,513:145844-145852. doi: 10.1016/j.apsusc.2020.145844
Kumar R S, Jeong H, Jeong J, Chitumalla R K, Ko M J, Kumar K S, Jang J, Son Y. Synthesis of Porphyrin Sensitizers with a Thiazole Group as an Efficient π-Spacer: Potential Application in Dye-Sensitized Solar Cells[J]. RSC Adv., 2016,6:41294-41303. doi: 10.1039/C6RA00353B
Krishna J V S, Koteshwar D, Chowdhury T H, Singh S P, Bedja I, Islam A, Giribabu L. Efficient Near IR Porphyrins Containing a Triphenylamine-Substituted Anthryl Donating Group for Dye Sensitized Solar Cells[J]. J. Mater. Chem. C, 2019,7:13594-13605. doi: 10.1039/C9TC03943K
Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeerunndin M K, Grätzel M. Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat. Chem., 2014,6(3):242-247. doi: 10.1038/nchem.1861
Li W, Ren W H, Chen Z, Lu T F, Deng L, Tang J F, Zhang X M, Wang L, Bai F Q. Theoretical Design of Porphyrin Dyes with Electron-Deficit Heterocycles towards Near-IR Light Sensitization in Dye-Sensitized Solar Cells[J]. Sol. Energy, 2019,188:742-749. doi: 10.1016/j.solener.2019.06.062
Hu W X, Yu P, Zhang Z M, Shen W, Li M, He R X. Theoretical Study of YD2-o-C8-Based Derivatives as Promising Sensitizers for Dye-Sensitized Solar Cells[J]. J. Mater. Sci., 2017,52(3):1235-1245. doi: 10.1007/s10853-016-0364-z
Jia H L, Ji X H, Zhang M D, Ju Z M, Zheng H G. Effects of Heterocycles Containing Different Atoms as π-Bridges on the Performance of Dye-Sensitized Solar Cells[J]. Phys. Chem. Chem. Phys., 2015,17:16334-16340. doi: 10.1039/C5CP02194D
Cabau L, Kumar C V, Moncho A, Clifford J N, Lopez N, Palomares E. A Single Atom Change "Switches-On" the Solar-to-Energy Conversion Efficiency of Zn-Porphyrin Based Dye Sensitized Solar Cells to 105%[J]. Energy Environ. Sci., 2015,8:1368-1375. doi: 10.1039/C4EE03320E
Krishna N V, Krishna J V S, Singh S P, Giribabu L, Han L Y, Bedja I, Gupta R K, Islam A. Donor-π-Acceptor Based Stable Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Effect of π-Conjugated Spacers[J]. J. Phys. Chem. C, 2017,121:6464-6477. doi: 10.1021/acs.jpcc.6b12869
Ding W L, Cui Y M, Yang L N, Li Q S, Li Z S. Rational Design of Near-Infrared Zn-Porphyrin Dye Utilized in Co-Sensitized Solar Cell toward High Efficiency[J]. Dyes Pigm., 2017,136:450-457. doi: 10.1016/j.dyepig.2016.09.002
Jin X Y, Li D Y, Sun L B, Wang C L, Bai F Q. Theoretical Design of Porphyrin Sensitizers with Different Acceptors for Application in Dye Sensitized Solar Cells[J]. RSC Adv., 2018,8:19804-19810. doi: 10.1039/C8RA02974A
Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16, Revision A. 03., Gaussian, Inc., Wallingford CT, 2016.
Becke A D. Density-Functional Thermochemistry. Ⅲ. The Role of Exact Exchange[J]. J. Chem. Phys., 1993,98(7):5648-5652. doi: 10.1063/1.464913
Yanai T, Tew D P, Handy N C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAMB3LYP)[J]. Chem. Phys. Lett., 2004,393:51-57. doi: 10.1016/j.cplett.2004.06.011
Adamo C, Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Mode[J]. J. Chem. Phys., 1999,110:6158-6170. doi: 10.1063/1.478522
Zhao Y, Truhlar G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals[J]. Theor. Chem Acc., 2008,120:215-241. doi: 10.1007/s00214-007-0310-x
Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum Solvation Models[J]. Chem. Rev., 2005,105:2999-3093. doi: 10.1021/cr9904009
Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Comput. Chem., 2012,33:580-592. doi: 10.1002/jcc.22885
Liu Z Y, Lu T, Chen Q X. An sp-Hybridized All-Carboatomic Ring, Cyclo[18]Carbon: Electronic Structure, Electronic Spectrum, and Optical Nonlinearity[J]. Carbon, 2020,165:461-467. doi: 10.1016/j.carbon.2020.05.023
Le Bahers T, Adamo C, Ciofini I. A Qualitative Index of Spatial Extent in Charge-Transfer Excitations[J]. J. Chem. Theory Comput., 2011,7:2498-2506. doi: 10.1021/ct200308m
Lu T. Multiwfn Manual, Version 3.8(dev), Section 3.21.1, http://sobereva.com/multiwfn
Zhang G L, Bai Y, Li R Z, Shi D, Wenger S, Zakeeruddin S M, Grätzel M, Wang P. Employ A Bisthienothiophene Linker to Construct an Organic Chromophore for Efficient and Stable Dye-Sensitized Solar Cells[J]. Energy Environ. Sci., 2009,2:92-95. doi: 10.1039/B817990E
Asbury J B, Wang Y Q, Hao E C, Ghosh H N, Lian T Q. Regio-Controlled Intramolecular Reductive Cyclization of Diynes[J]. Res. Chem. Intermed., 2001,27:393-406. doi: 10.1163/156856701104202255
Zhang J, Li H B, Sun S L, Geng Y, Wu Y, Su Z M. Density Functional Theory Characterization and Design of High-Performance Diarylamine-Fluorene Dyes with Different π Spacers for Dye-Sensitized Solar Cells[J]. J. Mater. Chem., 2012,22:568-576. doi: 10.1039/C1JM13028E
Khabashesku V N, Balaji V, Boganov S E, Nfedov O M, Michl J. Matrix Isolation of Silacyclopentadienes: UV-Vis and IR Spectra and Photochemical Interconversion[J]. J. Am. Chem. Soc., 1994,116:320-329. doi: 10.1021/ja00080a037
Tamao K, Yamaguchi S. Regio-Controlled Intramolecular Reductive Cyclization of Diynes[J]. Pure Appl. Chem., 1996,68(1):139-144. doi: 10.1351/pac199668010139
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
Hui-Ying Chen , Hao-Lin Zhu , Pei-Qin Liao , Xiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046
Peng GENG , Guangcan XIANG , Wen ZHANG , Haichuang LAN , Shuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155
Xue-Peng Zhang , Yuchi Long , Yushu Pan , Jiding Wang , Baoyu Bai , Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107
Linjie ZHU , Xufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207
Simin Fang , Wei Huang , Guanghua Yu , Cong Wei , Mingli Gao , Guangshui Li , Hongjun Tian , Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023
Yongpo Zhang , Xinfeng Li , Yafei Song , Mengyao Sun , Congcong Yin , Chunyan Gao , Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092
Jinfeng Chu , Yicheng Wang , Ji Qi , Yulin Liu , Yan Li , Lan Jin , Lei He , Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105
Yingtong FAN , Yujin YAO , Shouhao WAN , Yihang SHEN , Xiang GAO , Cuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043
Blue represents hole distribution, green represents electron distribution