Citation: Qian-Qian GAO, Qing-Tang YUAN, Xu-Feng SONG, Yan-Min YU, Jing GUO. Theoretical Study on Regulation of Photoelectric Properties of Zinc Porphyrin Dyes with Heterocyclopentadiene as π-Bridge[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 295-303. doi: 10.11862/CJIC.2022.018 shu

Theoretical Study on Regulation of Photoelectric Properties of Zinc Porphyrin Dyes with Heterocyclopentadiene as π-Bridge

  • Corresponding author: Yan-Min YU, ymyu@bjut.edu.cn
  • Received Date: 11 August 2021
    Revised Date: 18 November 2021

Figures(7)

  • To explore the regulation of photoelectric properties of zinc porphyrin dyes with heterocyclopentadiene as π-bridge, six new zinc porphyrin dyes were designed by introducing heterocyclopentadiene with different heteroatoms as the π-bridge based on the reference dye YD2-o-C8. The frontier molecular orbital energy levels, absorption spectra, and the hole-electron separation characteristics of the designed dyes were investigated using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The results show that compared with the reference dye YD2-o-C8, the introduction of heterocyclopentadiene in π-bridge can improve the photoelectric performance of dyes. The photoelectric properties of porphyrin dyes can be regulated by changing heteroatoms. Further analysis on the relationship between the properties of heterocyclopentadienes and the photoelectric performance of the porphyrin dyes shows that the lowest unoccupied molecular orbital energy level of heterocyclopentadienes has a good linear relationship with the photoelectric properties of the designed porphyrin dyes. The stronger electron receiving ability of heterocyclopentadiene can lead to the better performance of the porphyrin dye. The silicon-heterocyclopentadiene is of the strongest electron receiving ability, and the corresponding porphyrin dye has the widest absorption spectra and the strongest intramolecular charge transfer ability.
  • 加载中
    1. [1]

      Jiao S Z, Wen J Y, Zhou Y, Sun Z C, Liu Y Y, Liu R P. Preparation and Property Studies of Polyaniline Film for Flexible Counter Electrode of Dye-Sensitized Solar Cells by Cyclic Voltammetry[J]. ChemistrySelect, 2021,6(2):230-233. doi: 10.1002/slct.202004412

    2. [2]

      Jiao S Z, Sun Z C, Wen J Y, Liu Y Y, Li F R, Miao Q Q, Wu W X, Li L H, Zhou Y. Development of Rapid Curing SiO2 Aerogel Composite-Based Quasi Solid-State Dye-Sensitized Solar Cells through Screen-Printing Technology[J]. ACS Appl. Mater. Interfaces, 2020,12(43):48794-48803. doi: 10.1021/acsami.0c14551

    3. [3]

      Grätzel M, O'regan B. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature, 1991,353(24):737-740.

    4. [4]

      Zeng K W, Tong Z F, Ma L, Zhu W H, Wu W J, Xie Y S. Molecular Engineering Strategies for Fabricating Efficient Porphyrin-Based Dye-Sensitized Solar Cells[J]. Energy Environ. Sci., 2020,13:1617-1657. doi: 10.1039/C9EE04200H

    5. [5]

      Urbani M, Grätzel M, Nazeeruddin M K, Torres T. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells[J]. Chem. Rev., 2014,114:12330-12396. doi: 10.1021/cr5001964

    6. [6]

      Li L L, Diau E W G. Porphyrin-Sensitized Solar Cells[J]. Chem. Soc. Rev., 2013,42:291-304. doi: 10.1039/C2CS35257E

    7. [7]

      Grätzel M, Kay A. Artificial Photosynthesis 1. Photosensitization of TiO2 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins[J]. J. Phys. Chem., 1993,97:6272-6277. doi: 10.1021/j100125a029

    8. [8]

      Zhou H R, Ji J M, Kang S H, Kim M S, Lee H S, Kim C H, Kim H K. Molecular Design and Synthesis of D-π-A Structured Porphyrin Dyes with Various Acceptor Units for Dye-Sensitized Solar Cells[J]. J. Mater. Chem. C, 2019,7:2843-2852. doi: 10.1039/C8TC05283B

    9. [9]

      Higashino T, Kurumisawa Y, Cai N, Fujimori Y, Tsuji Y, Nimura S, Packwood D M, Park J, Imahori H. A Hydroxamic Acid Anchoring Group for Durable Dye-Sensitized Solar Cells Incorporating a Cobalt Redox Shuttle[J]. ChemSusChem, 2017,10:3347-3351. doi: 10.1002/cssc.201701157

    10. [10]

      Li C M, Luo L, Wu D, Jiang R Y, Lan J B, Wang R L, Huang L Y, Yang S Y, You J S. Porphyrins with Intense Absorptivity: Highly Efficient Sensitizers with a Photovoltaic Efficiency of Up to 10.7% without a Cosensitizer and a Coabsorbate[J]. J. Mater. Chem. A, 2016,4:11829-11834. doi: 10.1039/C6TA02888H

    11. [11]

      Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-Sensitized Solar Cells with Cobalt(Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency[J]. Science, 2011,334(6056):629-634. doi: 10.1126/science.1209688

    12. [12]

      Luo J, Zhang J, Huang K W, Qi Q B, Dong S Q, Zhang J, Wang P, Wu J S. N-Annulated Perylene Substituted Zinc-Porphyrins with Different Linking Modes and Electron Acceptors for Dye Sensitized Solar Cells[J]. J. Mater. Chem. A, 2016,4:8428-8434. doi: 10.1039/C6TA02509A

    13. [13]

      Sheng Y, Li M J, Flores-Leonar M M, Lu W C, Yang J, Hu Y N. Rational Design of SM315-Based Porphyrin Sensitizers for Highly Efficient Dye-Sensitized Solar Cells: A Theoretical Study[J]. J. Mol. Struct., 2020,1205:127567-127576. doi: 10.1016/j.molstruc.2019.127567

    14. [14]

      Yuan Q T, Yu Y M, Sun Z C, Song X F. Enhancing the Photoelectric Properties of Zinc Porphyrin Dyes by Introducing Five-Membered Heterocyclic Rings into the Electron Donor: A Density Functional Theory and Time-Dependent Density Functional Theory Study[J]. ACS Omega, 2021,6(36):23551-23557. doi: 10.1021/acsomega.1c03635

    15. [15]

      Kang S H, Jung S Y, Kim Y W, Eom Y K, Kim H K. Exploratory Synthesis and Photovoltaic Performance Comparison of D-π-A Structured Zn-Porphyrins for Dye-Sensitized Solar Cells[J]. Dyes Pigm., 2018,149:341-347. doi: 10.1016/j.dyepig.2017.10.011

    16. [16]

      Zhang J, Chen C J, Zhu H C. Porphyrin Dyes Bearing Heterocyclic Anchoring Groups for Dye-Sensitized Solar Cells with Enhanced Efficiency and Long-Term Stability: Further Optimization of Champion Porphyrin Dye SM315[J]. Appl. Surf. Sci., 2020,513:145844-145852. doi: 10.1016/j.apsusc.2020.145844

    17. [17]

      Kumar R S, Jeong H, Jeong J, Chitumalla R K, Ko M J, Kumar K S, Jang J, Son Y. Synthesis of Porphyrin Sensitizers with a Thiazole Group as an Efficient π-Spacer: Potential Application in Dye-Sensitized Solar Cells[J]. RSC Adv., 2016,6:41294-41303. doi: 10.1039/C6RA00353B

    18. [18]

      Krishna J V S, Koteshwar D, Chowdhury T H, Singh S P, Bedja I, Islam A, Giribabu L. Efficient Near IR Porphyrins Containing a Triphenylamine-Substituted Anthryl Donating Group for Dye Sensitized Solar Cells[J]. J. Mater. Chem. C, 2019,7:13594-13605. doi: 10.1039/C9TC03943K

    19. [19]

      Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeerunndin M K, Grätzel M. Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat. Chem., 2014,6(3):242-247. doi: 10.1038/nchem.1861

    20. [20]

      Li W, Ren W H, Chen Z, Lu T F, Deng L, Tang J F, Zhang X M, Wang L, Bai F Q. Theoretical Design of Porphyrin Dyes with Electron-Deficit Heterocycles towards Near-IR Light Sensitization in Dye-Sensitized Solar Cells[J]. Sol. Energy, 2019,188:742-749. doi: 10.1016/j.solener.2019.06.062

    21. [21]

      Hu W X, Yu P, Zhang Z M, Shen W, Li M, He R X. Theoretical Study of YD2-o-C8-Based Derivatives as Promising Sensitizers for Dye-Sensitized Solar Cells[J]. J. Mater. Sci., 2017,52(3):1235-1245. doi: 10.1007/s10853-016-0364-z

    22. [22]

      Jia H L, Ji X H, Zhang M D, Ju Z M, Zheng H G. Effects of Heterocycles Containing Different Atoms as π-Bridges on the Performance of Dye-Sensitized Solar Cells[J]. Phys. Chem. Chem. Phys., 2015,17:16334-16340. doi: 10.1039/C5CP02194D

    23. [23]

      Cabau L, Kumar C V, Moncho A, Clifford J N, Lopez N, Palomares E. A Single Atom Change "Switches-On" the Solar-to-Energy Conversion Efficiency of Zn-Porphyrin Based Dye Sensitized Solar Cells to 105%[J]. Energy Environ. Sci., 2015,8:1368-1375. doi: 10.1039/C4EE03320E

    24. [24]

      Krishna N V, Krishna J V S, Singh S P, Giribabu L, Han L Y, Bedja I, Gupta R K, Islam A. Donor-π-Acceptor Based Stable Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Effect of π-Conjugated Spacers[J]. J. Phys. Chem. C, 2017,121:6464-6477. doi: 10.1021/acs.jpcc.6b12869

    25. [25]

      Ding W L, Cui Y M, Yang L N, Li Q S, Li Z S. Rational Design of Near-Infrared Zn-Porphyrin Dye Utilized in Co-Sensitized Solar Cell toward High Efficiency[J]. Dyes Pigm., 2017,136:450-457. doi: 10.1016/j.dyepig.2016.09.002

    26. [26]

      Jin X Y, Li D Y, Sun L B, Wang C L, Bai F Q. Theoretical Design of Porphyrin Sensitizers with Different Acceptors for Application in Dye Sensitized Solar Cells[J]. RSC Adv., 2018,8:19804-19810. doi: 10.1039/C8RA02974A

    27. [27]

      Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16, Revision A. 03., Gaussian, Inc., Wallingford CT, 2016.

    28. [28]

      Becke A D. Density-Functional Thermochemistry. Ⅲ. The Role of Exact Exchange[J]. J. Chem. Phys., 1993,98(7):5648-5652. doi: 10.1063/1.464913

    29. [29]

      Yanai T, Tew D P, Handy N C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAMB3LYP)[J]. Chem. Phys. Lett., 2004,393:51-57. doi: 10.1016/j.cplett.2004.06.011

    30. [30]

      Adamo C, Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Mode[J]. J. Chem. Phys., 1999,110:6158-6170. doi: 10.1063/1.478522

    31. [31]

      Zhao Y, Truhlar G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals[J]. Theor. Chem Acc., 2008,120:215-241. doi: 10.1007/s00214-007-0310-x

    32. [32]

      Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum Solvation Models[J]. Chem. Rev., 2005,105:2999-3093. doi: 10.1021/cr9904009

    33. [33]

      Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Comput. Chem., 2012,33:580-592. doi: 10.1002/jcc.22885

    34. [34]

      Liu Z Y, Lu T, Chen Q X. An sp-Hybridized All-Carboatomic Ring, Cyclo[18]Carbon: Electronic Structure, Electronic Spectrum, and Optical Nonlinearity[J]. Carbon, 2020,165:461-467. doi: 10.1016/j.carbon.2020.05.023

    35. [35]

      Le Bahers T, Adamo C, Ciofini I. A Qualitative Index of Spatial Extent in Charge-Transfer Excitations[J]. J. Chem. Theory Comput., 2011,7:2498-2506. doi: 10.1021/ct200308m

    36. [36]

      Lu T. Multiwfn Manual, Version 3.8(dev), Section 3.21.1, http://sobereva.com/multiwfn

    37. [37]

      Zhang G L, Bai Y, Li R Z, Shi D, Wenger S, Zakeeruddin S M, Grätzel M, Wang P. Employ A Bisthienothiophene Linker to Construct an Organic Chromophore for Efficient and Stable Dye-Sensitized Solar Cells[J]. Energy Environ. Sci., 2009,2:92-95. doi: 10.1039/B817990E

    38. [38]

      Asbury J B, Wang Y Q, Hao E C, Ghosh H N, Lian T Q. Regio-Controlled Intramolecular Reductive Cyclization of Diynes[J]. Res. Chem. Intermed., 2001,27:393-406. doi: 10.1163/156856701104202255

    39. [39]

      Zhang J, Li H B, Sun S L, Geng Y, Wu Y, Su Z M. Density Functional Theory Characterization and Design of High-Performance Diarylamine-Fluorene Dyes with Different π Spacers for Dye-Sensitized Solar Cells[J]. J. Mater. Chem., 2012,22:568-576. doi: 10.1039/C1JM13028E

    40. [40]

      Khabashesku V N, Balaji V, Boganov S E, Nfedov O M, Michl J. Matrix Isolation of Silacyclopentadienes: UV-Vis and IR Spectra and Photochemical Interconversion[J]. J. Am. Chem. Soc., 1994,116:320-329. doi: 10.1021/ja00080a037

    41. [41]

      Tamao K, Yamaguchi S. Regio-Controlled Intramolecular Reductive Cyclization of Diynes[J]. Pure Appl. Chem., 1996,68(1):139-144. doi: 10.1351/pac199668010139

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    5. [5]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    6. [6]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    7. [7]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    8. [8]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Yupeng TANGHaiying YANGFan JINNan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460

    11. [11]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    12. [12]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    13. [13]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    14. [14]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    15. [15]

      Xue-Peng Zhang Yuchi Long Yushu Pan Jiding Wang Baoyu Bai Rui Ding . 定量构效关系方法学习探索:以钴卟啉活化氧气为例. University Chemistry, 2025, 40(8): 345-359. doi: 10.12461/PKU.DXHX202410107

    16. [16]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    17. [17]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    18. [18]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    19. [19]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    20. [20]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

Metrics
  • PDF Downloads(8)
  • Abstract views(1536)
  • HTML views(371)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return