Citation: Qian-Qian GAO, Qing-Tang YUAN, Xu-Feng SONG, Yan-Min YU, Jing GUO. Theoretical Study on Regulation of Photoelectric Properties of Zinc Porphyrin Dyes with Heterocyclopentadiene as π-Bridge[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 295-303. doi: 10.11862/CJIC.2022.018 shu

Theoretical Study on Regulation of Photoelectric Properties of Zinc Porphyrin Dyes with Heterocyclopentadiene as π-Bridge

  • Corresponding author: Yan-Min YU, ymyu@bjut.edu.cn
  • Received Date: 11 August 2021
    Revised Date: 18 November 2021

Figures(7)

  • To explore the regulation of photoelectric properties of zinc porphyrin dyes with heterocyclopentadiene as π-bridge, six new zinc porphyrin dyes were designed by introducing heterocyclopentadiene with different heteroatoms as the π-bridge based on the reference dye YD2-o-C8. The frontier molecular orbital energy levels, absorption spectra, and the hole-electron separation characteristics of the designed dyes were investigated using the density functional theory (DFT) and time-dependent density functional theory (TD-DFT) methods. The results show that compared with the reference dye YD2-o-C8, the introduction of heterocyclopentadiene in π-bridge can improve the photoelectric performance of dyes. The photoelectric properties of porphyrin dyes can be regulated by changing heteroatoms. Further analysis on the relationship between the properties of heterocyclopentadienes and the photoelectric performance of the porphyrin dyes shows that the lowest unoccupied molecular orbital energy level of heterocyclopentadienes has a good linear relationship with the photoelectric properties of the designed porphyrin dyes. The stronger electron receiving ability of heterocyclopentadiene can lead to the better performance of the porphyrin dye. The silicon-heterocyclopentadiene is of the strongest electron receiving ability, and the corresponding porphyrin dye has the widest absorption spectra and the strongest intramolecular charge transfer ability.
  • 加载中
    1. [1]

      Jiao S Z, Wen J Y, Zhou Y, Sun Z C, Liu Y Y, Liu R P. Preparation and Property Studies of Polyaniline Film for Flexible Counter Electrode of Dye-Sensitized Solar Cells by Cyclic Voltammetry[J]. ChemistrySelect, 2021,6(2):230-233. doi: 10.1002/slct.202004412

    2. [2]

      Jiao S Z, Sun Z C, Wen J Y, Liu Y Y, Li F R, Miao Q Q, Wu W X, Li L H, Zhou Y. Development of Rapid Curing SiO2 Aerogel Composite-Based Quasi Solid-State Dye-Sensitized Solar Cells through Screen-Printing Technology[J]. ACS Appl. Mater. Interfaces, 2020,12(43):48794-48803. doi: 10.1021/acsami.0c14551

    3. [3]

      Grätzel M, O'regan B. A Low-Cost, High-Efficiency Solar-Cell Based on Dye-Sensitized Colloidal TiO2 Films[J]. Nature, 1991,353(24):737-740.

    4. [4]

      Zeng K W, Tong Z F, Ma L, Zhu W H, Wu W J, Xie Y S. Molecular Engineering Strategies for Fabricating Efficient Porphyrin-Based Dye-Sensitized Solar Cells[J]. Energy Environ. Sci., 2020,13:1617-1657. doi: 10.1039/C9EE04200H

    5. [5]

      Urbani M, Grätzel M, Nazeeruddin M K, Torres T. Meso-Substituted Porphyrins for Dye-Sensitized Solar Cells[J]. Chem. Rev., 2014,114:12330-12396. doi: 10.1021/cr5001964

    6. [6]

      Li L L, Diau E W G. Porphyrin-Sensitized Solar Cells[J]. Chem. Soc. Rev., 2013,42:291-304. doi: 10.1039/C2CS35257E

    7. [7]

      Grätzel M, Kay A. Artificial Photosynthesis 1. Photosensitization of TiO2 Solar Cells with Chlorophyll Derivatives and Related Natural Porphyrins[J]. J. Phys. Chem., 1993,97:6272-6277. doi: 10.1021/j100125a029

    8. [8]

      Zhou H R, Ji J M, Kang S H, Kim M S, Lee H S, Kim C H, Kim H K. Molecular Design and Synthesis of D-π-A Structured Porphyrin Dyes with Various Acceptor Units for Dye-Sensitized Solar Cells[J]. J. Mater. Chem. C, 2019,7:2843-2852. doi: 10.1039/C8TC05283B

    9. [9]

      Higashino T, Kurumisawa Y, Cai N, Fujimori Y, Tsuji Y, Nimura S, Packwood D M, Park J, Imahori H. A Hydroxamic Acid Anchoring Group for Durable Dye-Sensitized Solar Cells Incorporating a Cobalt Redox Shuttle[J]. ChemSusChem, 2017,10:3347-3351. doi: 10.1002/cssc.201701157

    10. [10]

      Li C M, Luo L, Wu D, Jiang R Y, Lan J B, Wang R L, Huang L Y, Yang S Y, You J S. Porphyrins with Intense Absorptivity: Highly Efficient Sensitizers with a Photovoltaic Efficiency of Up to 10.7% without a Cosensitizer and a Coabsorbate[J]. J. Mater. Chem. A, 2016,4:11829-11834. doi: 10.1039/C6TA02888H

    11. [11]

      Yella A, Lee H W, Tsao H N, Yi C, Chandiran A K, Nazeeruddin M K, Diau E W G, Yeh C Y, Zakeeruddin S M, Grätzel M. Porphyrin-Sensitized Solar Cells with Cobalt(Ⅱ/Ⅲ)-Based Redox Electrolyte Exceed 12 Percent Efficiency[J]. Science, 2011,334(6056):629-634. doi: 10.1126/science.1209688

    12. [12]

      Luo J, Zhang J, Huang K W, Qi Q B, Dong S Q, Zhang J, Wang P, Wu J S. N-Annulated Perylene Substituted Zinc-Porphyrins with Different Linking Modes and Electron Acceptors for Dye Sensitized Solar Cells[J]. J. Mater. Chem. A, 2016,4:8428-8434. doi: 10.1039/C6TA02509A

    13. [13]

      Sheng Y, Li M J, Flores-Leonar M M, Lu W C, Yang J, Hu Y N. Rational Design of SM315-Based Porphyrin Sensitizers for Highly Efficient Dye-Sensitized Solar Cells: A Theoretical Study[J]. J. Mol. Struct., 2020,1205:127567-127576. doi: 10.1016/j.molstruc.2019.127567

    14. [14]

      Yuan Q T, Yu Y M, Sun Z C, Song X F. Enhancing the Photoelectric Properties of Zinc Porphyrin Dyes by Introducing Five-Membered Heterocyclic Rings into the Electron Donor: A Density Functional Theory and Time-Dependent Density Functional Theory Study[J]. ACS Omega, 2021,6(36):23551-23557. doi: 10.1021/acsomega.1c03635

    15. [15]

      Kang S H, Jung S Y, Kim Y W, Eom Y K, Kim H K. Exploratory Synthesis and Photovoltaic Performance Comparison of D-π-A Structured Zn-Porphyrins for Dye-Sensitized Solar Cells[J]. Dyes Pigm., 2018,149:341-347. doi: 10.1016/j.dyepig.2017.10.011

    16. [16]

      Zhang J, Chen C J, Zhu H C. Porphyrin Dyes Bearing Heterocyclic Anchoring Groups for Dye-Sensitized Solar Cells with Enhanced Efficiency and Long-Term Stability: Further Optimization of Champion Porphyrin Dye SM315[J]. Appl. Surf. Sci., 2020,513:145844-145852. doi: 10.1016/j.apsusc.2020.145844

    17. [17]

      Kumar R S, Jeong H, Jeong J, Chitumalla R K, Ko M J, Kumar K S, Jang J, Son Y. Synthesis of Porphyrin Sensitizers with a Thiazole Group as an Efficient π-Spacer: Potential Application in Dye-Sensitized Solar Cells[J]. RSC Adv., 2016,6:41294-41303. doi: 10.1039/C6RA00353B

    18. [18]

      Krishna J V S, Koteshwar D, Chowdhury T H, Singh S P, Bedja I, Islam A, Giribabu L. Efficient Near IR Porphyrins Containing a Triphenylamine-Substituted Anthryl Donating Group for Dye Sensitized Solar Cells[J]. J. Mater. Chem. C, 2019,7:13594-13605. doi: 10.1039/C9TC03943K

    19. [19]

      Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F E, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeerunndin M K, Grätzel M. Dye-Sensitized Solar Cells with 13% Efficiency Achieved through the Molecular Engineering of Porphyrin Sensitizers[J]. Nat. Chem., 2014,6(3):242-247. doi: 10.1038/nchem.1861

    20. [20]

      Li W, Ren W H, Chen Z, Lu T F, Deng L, Tang J F, Zhang X M, Wang L, Bai F Q. Theoretical Design of Porphyrin Dyes with Electron-Deficit Heterocycles towards Near-IR Light Sensitization in Dye-Sensitized Solar Cells[J]. Sol. Energy, 2019,188:742-749. doi: 10.1016/j.solener.2019.06.062

    21. [21]

      Hu W X, Yu P, Zhang Z M, Shen W, Li M, He R X. Theoretical Study of YD2-o-C8-Based Derivatives as Promising Sensitizers for Dye-Sensitized Solar Cells[J]. J. Mater. Sci., 2017,52(3):1235-1245. doi: 10.1007/s10853-016-0364-z

    22. [22]

      Jia H L, Ji X H, Zhang M D, Ju Z M, Zheng H G. Effects of Heterocycles Containing Different Atoms as π-Bridges on the Performance of Dye-Sensitized Solar Cells[J]. Phys. Chem. Chem. Phys., 2015,17:16334-16340. doi: 10.1039/C5CP02194D

    23. [23]

      Cabau L, Kumar C V, Moncho A, Clifford J N, Lopez N, Palomares E. A Single Atom Change "Switches-On" the Solar-to-Energy Conversion Efficiency of Zn-Porphyrin Based Dye Sensitized Solar Cells to 105%[J]. Energy Environ. Sci., 2015,8:1368-1375. doi: 10.1039/C4EE03320E

    24. [24]

      Krishna N V, Krishna J V S, Singh S P, Giribabu L, Han L Y, Bedja I, Gupta R K, Islam A. Donor-π-Acceptor Based Stable Porphyrin Sensitizers for Dye-Sensitized Solar Cells: Effect of π-Conjugated Spacers[J]. J. Phys. Chem. C, 2017,121:6464-6477. doi: 10.1021/acs.jpcc.6b12869

    25. [25]

      Ding W L, Cui Y M, Yang L N, Li Q S, Li Z S. Rational Design of Near-Infrared Zn-Porphyrin Dye Utilized in Co-Sensitized Solar Cell toward High Efficiency[J]. Dyes Pigm., 2017,136:450-457. doi: 10.1016/j.dyepig.2016.09.002

    26. [26]

      Jin X Y, Li D Y, Sun L B, Wang C L, Bai F Q. Theoretical Design of Porphyrin Sensitizers with Different Acceptors for Application in Dye Sensitized Solar Cells[J]. RSC Adv., 2018,8:19804-19810. doi: 10.1039/C8RA02974A

    27. [27]

      Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Petersson G A, Nakatsuji H, Li X, Caricato M, Marenich A V, Bloino J, Janesko B G, Gomperts R, Mennucci B, Hratchian H P, Ortiz J V, Izmaylov A F, Sonnenberg J L, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski V G, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M J, Heyd J J, Brothers E N, Kudin K N, Staroverov V N, Keith T A, Kobayashi R, Normand J, Raghavachari K, Rendell A P, Burant J C, Iyengar S S, Tomasi J, Cossi M, Millam J M, Klene M, Adamo C, Cammi R, Ochterski J W, Martin R L, Morokuma K, Farkas O, Foresman J B, Fox D J. Gaussian 16, Revision A. 03., Gaussian, Inc., Wallingford CT, 2016.

    28. [28]

      Becke A D. Density-Functional Thermochemistry. Ⅲ. The Role of Exact Exchange[J]. J. Chem. Phys., 1993,98(7):5648-5652. doi: 10.1063/1.464913

    29. [29]

      Yanai T, Tew D P, Handy N C. A New Hybrid Exchange-Correlation Functional Using the Coulomb-Attenuating Method (CAMB3LYP)[J]. Chem. Phys. Lett., 2004,393:51-57. doi: 10.1016/j.cplett.2004.06.011

    30. [30]

      Adamo C, Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Mode[J]. J. Chem. Phys., 1999,110:6158-6170. doi: 10.1063/1.478522

    31. [31]

      Zhao Y, Truhlar G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals[J]. Theor. Chem Acc., 2008,120:215-241. doi: 10.1007/s00214-007-0310-x

    32. [32]

      Tomasi J, Mennucci B, Cammi R. Quantum Mechanical Continuum Solvation Models[J]. Chem. Rev., 2005,105:2999-3093. doi: 10.1021/cr9904009

    33. [33]

      Lu T, Chen F W. Multiwfn: A Multifunctional Wavefunction Analyzer[J]. J. Comput. Chem., 2012,33:580-592. doi: 10.1002/jcc.22885

    34. [34]

      Liu Z Y, Lu T, Chen Q X. An sp-Hybridized All-Carboatomic Ring, Cyclo[18]Carbon: Electronic Structure, Electronic Spectrum, and Optical Nonlinearity[J]. Carbon, 2020,165:461-467. doi: 10.1016/j.carbon.2020.05.023

    35. [35]

      Le Bahers T, Adamo C, Ciofini I. A Qualitative Index of Spatial Extent in Charge-Transfer Excitations[J]. J. Chem. Theory Comput., 2011,7:2498-2506. doi: 10.1021/ct200308m

    36. [36]

      Lu T. Multiwfn Manual, Version 3.8(dev), Section 3.21.1, http://sobereva.com/multiwfn

    37. [37]

      Zhang G L, Bai Y, Li R Z, Shi D, Wenger S, Zakeeruddin S M, Grätzel M, Wang P. Employ A Bisthienothiophene Linker to Construct an Organic Chromophore for Efficient and Stable Dye-Sensitized Solar Cells[J]. Energy Environ. Sci., 2009,2:92-95. doi: 10.1039/B817990E

    38. [38]

      Asbury J B, Wang Y Q, Hao E C, Ghosh H N, Lian T Q. Regio-Controlled Intramolecular Reductive Cyclization of Diynes[J]. Res. Chem. Intermed., 2001,27:393-406. doi: 10.1163/156856701104202255

    39. [39]

      Zhang J, Li H B, Sun S L, Geng Y, Wu Y, Su Z M. Density Functional Theory Characterization and Design of High-Performance Diarylamine-Fluorene Dyes with Different π Spacers for Dye-Sensitized Solar Cells[J]. J. Mater. Chem., 2012,22:568-576. doi: 10.1039/C1JM13028E

    40. [40]

      Khabashesku V N, Balaji V, Boganov S E, Nfedov O M, Michl J. Matrix Isolation of Silacyclopentadienes: UV-Vis and IR Spectra and Photochemical Interconversion[J]. J. Am. Chem. Soc., 1994,116:320-329. doi: 10.1021/ja00080a037

    41. [41]

      Tamao K, Yamaguchi S. Regio-Controlled Intramolecular Reductive Cyclization of Diynes[J]. Pure Appl. Chem., 1996,68(1):139-144. doi: 10.1351/pac199668010139

  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(5)
  • Abstract views(832)
  • HTML views(241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return