Citation: Hua LIU, Xue-Chao GAO, Li PENG, Xue-Hong GU. TiO2 Doping of α-Al2O3 Hollow Fiber Membranes for Modulating the Sintering Behavior and Surface Property[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(1): 14-20. doi: 10.11862/CJIC.2022.014 shu

TiO2 Doping of α-Al2O3 Hollow Fiber Membranes for Modulating the Sintering Behavior and Surface Property

  • Corresponding author: Xue-Hong GU, xhgu@njtech.edu.cn
  • Received Date: 28 March 2021
    Revised Date: 6 November 2021

Figures(8)

  • α -Al2O3 ceramic hollow fiber membranes were prepared by a combined phase-inversion and sintering method. Effects of TiO2 doping on sintering behavior and surface property of hollow fiber membranes were investigated extensively. The results showed that a solid reaction between TiO2 and α-Al2O3 could promote the sintering of α - Al2O3 hollow fibers. When the doping TiO2 content (molar fraction) was 1% - 2%, the sintering temperature of hollow fibers could decrease to 1 400 ℃ while the mechanical strength was unchanged. The hydroxyl active sites on the surface of the fibers increased with the doping amount of TiO2, which was helpful to the growth of the CHA zeolite membrane on the prepared fibers. High-quality CHA zeolite membranes could be prepared on the α-Al2O3 hollow fibers doped with a molar fraction of 1%-3% TiO2, which showed high separation factors above 10 000 for pervaporation dehydration of ethanol/water (9∶1, w/w) mixture.
  • 加载中
    1. [1]

      Tan X Y, Liu S M, Li K. Preparation and Characterization of Inorganic Hollow Fiber Membranes[J]. J. Membr. Sci., 2001,188(1):87-95. doi: 10.1016/S0376-7388(01)00369-6

    2. [2]

      García-García F R, Rahman M A, Kingsbury B F K, Li K. Asymmetric Ceramic Hollow Fibres: New Micro-supports for Gas-Phase Catalytic Reactions[J]. Appl. Catal. A, 2011,393(1/2):71-77.  

    3. [3]

      Ma J, Du B, He C, Zeng S H, Hua K H, Xi X, Luo B Y, Shui A Z, Tian W. Corrosion Resistance Properties of Porous Alumina - Mullite Ceramic Membrane Supports[J]. Adv. Eng. Mater., 2020,22(7)1901442. doi: 10.1002/adem.201901442

    4. [4]

      Liu S M, Li K, Hughes R. Preparation of Porous Aluminium Oxide (Al2O3) Hollow Fibre Membranes by A Combined Phase - Inversion and Sintering Method[J]. Ceram. Int., 2003,29(8):875-881. doi: 10.1016/S0272-8842(03)00030-0

    5. [5]

      Kingsbury B F K, Li K. A Morphological Study of Ceramic Hollow Fibre Membranes[J]. J. Membr. Sci., 2009,328(1/2):134-140.  

    6. [6]

      Suzuki T, Yamaguchi T, Fujishiro Y, Awano M. Fabrication and Characterization of Micro Tubular SOFCs for Operation in the Intermediate Temperature[J]. J. Power Sources, 2006,160(1):73-77. doi: 10.1016/j.jpowsour.2006.01.037

    7. [7]

      Zhu J W, Dong Z Y, Liu Z K, Zhang K, Zhang G R, Jin W Q. Multichannel Mixed-Conducting Hollow Fiber Membranes for Oxygen Separation[J]. AIChE J., 2014,60(6):1969-1976. doi: 10.1002/aic.14471

    8. [8]

      Shi Z Z, Zhang Y T, Cai C, Zhang C, Gu X H. Preparation and Characterization of α - Al2O3 Hollow Fiber Membranes with Four - Channel Configuration[J]. Ceram. Int., 2015,41(1):1333-1339. doi: 10.1016/j.ceramint.2014.09.065

    9. [9]

      Liu D Z, Zhang Y T, Jiang J, Wang X R, Zhang C, Gu X H. High-Performance NaA Zeolite Membranes Supported on Four-Channel Ceramic Hollow Fibers for Ethanol Dehydration[J]. RSC Adv., 2015,5:95866-95871. doi: 10.1039/C5RA18711G

    10. [10]

      Yuan C F, Liu Q, Chen H F, Huang A S. Mussel-Inspired Polydopamine Modification of Supports for the Facile Synthesis of Zeolite LTA Molecular Sieve Membranes[J]. RSC Adv., 2014,4(79):41982-41988. doi: 10.1039/C4RA05400H

    11. [11]

      Wang N, Huang A, Caro J. Improved MOF and Zeolite Membranes by Support Modification[J]. Procedia Eng., 2012,44:1622-1623. doi: 10.1016/j.proeng.2012.08.888

    12. [12]

      Liu J Q, Liu C Y, Huang A S. Co-Based Zeolitic Imidazolate Framework ZIF-9 Membranes Prepared on α-Al2O3 Tubes through Covalent Modification for Hydrogen Separation[J]. Int. J. Hydrogen Energy, 2020,45(1):703-711. doi: 10.1016/j.ijhydene.2019.10.230

    13. [13]

      Das J K, Das N, Bandyopadhyay S. Highly Selective SAPO 34 Membrane on Surface Modified Clay - Alumina Tubular Support for H2/CO2 Separation[J]. Int. J. Hydrogen Energy, 2012,37(13):10354-10364. doi: 10.1016/j.ijhydene.2012.03.102

    14. [14]

      Das J K, Das N, Bandyopadhyay S. Highly Oriented Improved SAPO 34 Membrane on Low Cost Support for Hydrogen Gas Separation[J]. J. Mater. Chem. A, 2013,1(16):4966-4973. doi: 10.1039/c3ta01095c

    15. [15]

      Liu H, Liu J Y, Hong Z, Wang S X, Gao X C, Gu X H. Preparation of Hollow Fiber Membranes from Mullite Particles with Aid of Sintering Additives[J]. J. Adv. Ceram., 2021,10(1):78-87. doi: 10.1007/s40145-020-0420-7

    16. [16]

      Qiu H, Jiang J, Peng L, Liu H, Gu X H. Choline Chloride Templated CHA Zeolite Membranes for Solvents Dehydration with Improved Acid Stability[J]. Microporous Mesoporous Mater., 2019,284:170-176. doi: 10.1016/j.micromeso.2019.04.011

    17. [17]

      Li L L, Chen M L, Dong Y C, Dong X F, Cerneaux S, Hampshire S, Cao J J, Zhu L, Zhu Z W, Liu J. A Low - Cost Alumina - Mullite Composite Hollow Fiber Ceramic Membrane Fabricated via Phase-Inversion and Sintering Method[J]. J. Eur. Ceram. Soc., 2016,36(8):2057-2066. doi: 10.1016/j.jeurceramsoc.2016.02.020

    18. [18]

      Wang C J, Huang C Y. Effect of TiO2 Addition on the Sintering Behavior, Hardness and Fracture Toughness of an Ultrafine Alumina[J]. Mater. Sci. Eng. A, 2008,492(1/2):306-310.  

    19. [19]

      Li L S, Wang Q F, Liao G H, Li K P, Ye G T. Densification Behavior of Mullite - Al2TiO5 Composites by Reaction Sintering of Natural Andalusite and TiO2[J]. Ceram. Int., 2018,44(4):3981-3986. doi: 10.1016/j.ceramint.2017.11.191

    20. [20]

      Huang Y X, Senos A M R, Baptista J L. Effect of Excess SiO2 on the Reaction Sintering of Aluminium Titanate-25 vol% Mullite Composites[J]. Ceram. Int., 1998,24(3):223-228. doi: 10.1016/S0272-8842(97)00006-0

    21. [21]

      Freudenberg B, Mocellin A. Aluminium Titanate Formation by Solid State Reaction of Al2O3 and TiO2 Single Crystals[J]. J. Mater. Sci., 1990,25(8):3701-3708. doi: 10.1007/BF00575408

    22. [22]

      Ho T H, Chang S J, Li C C. Effect of Surface Hydroxyl Groups on the Dispersion of Ceramic Powders[J]. Mater. Chem. Phys., 2016,172:1-5. doi: 10.1016/j.matchemphys.2016.01.060

    23. [23]

      Hass K C, Schneider W F, Curioni A, Andreoni W. The Chemistry of Water on Alumina Surfaces: Reaction Dynamics from First Principles[J]. Science, 1998,282(5387):265-268. doi: 10.1126/science.282.5387.265

  • 加载中
    1. [1]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    4. [4]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    5. [5]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    6. [6]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    11. [11]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    12. [12]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    19. [19]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    20. [20]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

Metrics
  • PDF Downloads(7)
  • Abstract views(1104)
  • HTML views(245)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return