Citation: Fu-Sheng BIE, Ai-Shan REN, Hua-Qin XU, Jin-Hu WANG, Xue-Jing LIU, Dong-Jian ZHU. Fluorescent Probe Based on Carbazole-N, S-Heterocrown Ether: Synthesis and Properties of Ag+ Detection[J]. Chinese Journal of Inorganic Chemistry, ;2022, 38(2): 237-243. doi: 10.11862/CJIC.2022.013 shu

Fluorescent Probe Based on Carbazole-N, S-Heterocrown Ether: Synthesis and Properties of Ag+ Detection

Figures(6)

  • A new fluorescent probe L containing heterocrown ether group was designed and synthesized from t-butyl bis(2-chloroethyl)carbamate, 2, 2'-(ethane-1, 2-diylbis(oxy))diethanethiol, and N-ethyl carbazole. The structure of L was characterized by 1H NMR, 13C NMR, and high-resolution mass spectrometry. The selectivity of probe L with Ag+ was investigated by fluorescence spectroscopy in water/ethanol solvent (4:1, V/V). All the results showed that the binding ratio for probe L to Ag+ was 1:1. The binding constant Ka was calculated to be 2.01×105 L·mol-1 and the detection limit was 4.13 μmol·L-1. The results also showed that probe L could be used to detection of Ag+ in the river and other environmental water samples.
  • 加载中
    1. [1]

      Qi L, Yan Z, Huo Y, Hai X M, Zhang Z Q. MnO2 Nanosheet-Assisted Ligand-DNA Interaction-Based Fluorescence Polarization Biosensor for the Detection of Ag+ Ions[J]. Biosens. Bioelectron., 2017,87:566-571. doi: 10.1016/j.bios.2016.08.093

    2. [2]

      SUN J F, HUANG S L, GUO X P. Research on the Appropriate Concentration of Silver Ion in Antibacterial Agents[J]. Journal of Pharmaceutical Research, 2017,36(9):516-518.  

    3. [3]

      El-Shekheby H A, Mangood A H, Hamza S M, Al-Kady A S, Ebeid E M. A Highly Efficient and Selective Turn-On Fluorescent Sensor for Hg2+, Ag+ and Ag Nanoparticles Based on a Coumarin Dithioate Derivative[J]. Luminescence, 2014,29(2):158-167. doi: 10.1002/bio.2521

    4. [4]

      Saptarshi S R, Duschl A, Lopata A L. Interaction of Nanoparticles with Proteins: Relation to Bio-reactivity of the Nanoparticle[J]. J. Nanobiotechnol., 2013,1126. doi: 10.1186/1477-3155-11-26

    5. [5]

      Li Y F, Chen C Y, Li B, Sun J, Wang J X, Gao Y X, Zhao Y L, Chai Z F. Elimination Efficiency of Different Reagents for the Memory Effect of Mercury Using ICP-MS[J]. J. Anal. At. Spectrom., 2006,21:94-96. doi: 10.1039/B511367A

    6. [6]

      Karunasagar D, Arunachalam J, Gangadharan S. Development of a 'Collect and Punch'Cold Vapour Inductively Coupled Plasma Mass Spectrometric Method for the Direct Determination of Mercury at Nanograms per Litre Levels[J]. J. Anal. At. Spectrom., 1998,13:679-682. doi: 10.1039/A802132E

    7. [7]

      Zanganeh A R, Amini M K. A Potentiometric and Voltammetric Sensor Based on Polypyrrole Film with Electrochemically Induced Recognition Sites for Detection of Silver Ion[J]. Electrochim. Acta, 2007,52:3822-3830. doi: 10.1016/j.electacta.2006.10.055

    8. [8]

      Czarnik A W. Supramolecular Chemistry, Fluorescence, and Sensing. ACS Symposium Series: Vol. 538. Washington DC: American Chemical Society, 1993: 1-9

    9. [9]

      LI L Q, MENG L P. Recent Progress in Fluorescent Sensor for Silver Ion Based on Small Organic Molecule[J]. Guangzhou Chemical Industry, 2013,41(12):24-26. doi: 10.3969/j.issn.1001-9677.2013.12.009

    10. [10]

      ZHANG X, YU X G, LI C Y, LIAO H G, TAN Y, LIU H L, TONG M L, LI J R, WANG X Z. Development of a Furan-Derived Hexaazatriphenlene (HAT) Sensor with Fluorescent"Turn-Off"Feature for Selective Ag+ Recognition[J]. Journal of Chemical Engineering of Chinese Universities, 2021,35(4):697-701. doi: 10.3969/j.issn.1003-9015.2021.04.015

    11. [11]

      Wang H H, Xue L, Jiang H. Ratiometric Fluorescent Sensor for Silver Ion and Its Resultant Complex for Iodide Anion in Aqueous Solution[J]. Org. Lett., 2011,13(15):3844-3847. doi: 10.1021/ol2013632

    12. [12]

      YIN K, YU Z, LUO Z L, LI Y, REN J. The Synthesis and Properties of a Coumarin Based Chemosensor for Silver Ion[J]. Journal of Hubei University (Natural Science Edition), 2015,37(2):154-158.  

    13. [13]

      ZHOU W, WU A B. Synthesis and Properties of Pyrimidine Naphthalimide-Based Ag+ Fluorescent Probes[J]. Chemical Reagents, 2020,42(6):694-698.  

    14. [14]

      FU D Y, YUAN W J, WANG W. Synthesis and Performance of a New Fluorescent Probe for Ag+ Recognition[J]. Chemical World, 2020,61(3):171-175.  

    15. [15]

      Han Q X, Liu X, Wang X C, Song Y Y, Yang L N, Li J, Qiang T T. Photoactivated Fluorescence-Based Analysis for the Facilitative and Selective Detection of Silver(Ⅰ) in Aqueous Solutions[J]. Dyes Pigm., 2021,184108793. doi: 10.1016/j.dyepig.2020.108793

    16. [16]

      Senkuytu E, Ecik E, Cosut B. Bodipy Decorated Triazine Chemosensors for Ag+ Ions with High Selectivity and Sensitivity[J]. J. Lumin., 2018,203:639-645. doi: 10.1016/j.jlumin.2018.06.075

    17. [17]

      Saiyasombata W, Kiatisevi S. Bis-BODIPY Linked-Triazole Based on Catechol Core for Selective Dual Detection of Ag+ and Hg2+[J]. RSC Adv., 2021,11:3703-3712. doi: 10.1039/D0RA09686E

    18. [18]

      Zhao F, Hu Y, Li Q, Hu S L. A New Carbazole-Based Fluorescence Sensor for High Selective Detection of Copper in Aqueous Solutions[J]. Heterocycles, 2017,94(3):515-522. doi: 10.3987/COM-17-13645

    19. [19]

      Steed J W, Atwood J L. Supramolecular Chemistry. 2nd ed. Chichester: John Wiley&Sons, Ltd., 2009: 114

    20. [20]

      GAO R M, LIU H G. Discussion of Concept of Detection of Limit[J]. Chin. J. Anal. Chem., 1993,21(10):1232-1236.  

    21. [21]

      The National Environmental Protection Agency of People's Republic of China, The State Bureau of Quality and Technical Supervision of People's Republic of China. Intgrated Wastwater Discharge Standard: GB 8978—1996. Beijing: China Standard Press, 1996.

    22. [22]

      Zhang Y Y, Chen X Z, Liu J J, Gao G, Zhang X Y, Hou S C, Wang H M. A Highly Selective and Sensitive Fluorescent Chemosensor for Distinguishing Cadmium(Ⅱ) from Zinc(Ⅱ) Based on Amide Tautomerization[J]. New J. Chem., 2018,42:19245-19251.

    23. [23]

      Wang H H, Xue L, Qian Y Y, Jiang H. Novel Ratiometric Fluorescent Sensor for Silver Ions[J]. Org. Lett., 2010,12:292-295.

    24. [24]

      Sherwood P, de Vries A H, Guest M F, Schreckenbach G C, Catlow R A, French S A, Billeter S. QUASI: A General Purpose Implementation of the QM/MM Approach and Its Application to Problems in Catalysis.[J]. J. Mol. Struct.-THEOCHEM, 2003,632:1-28.

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    10. [10]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    11. [11]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    12. [12]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    14. [14]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

Metrics
  • PDF Downloads(3)
  • Abstract views(669)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return